Anticoagulant activity of sulfated polysaccharides obtained from the brown seaweed Stephanocystis dioica

Autores

  • Gabriela Margarita García-Zamora Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional s/n. Col. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23096. México
  • Mauricio Muñoz-Ochoa Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional s/n. Col. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23096. México
  • Dora Luz Arvizu-Higuera CICIMAR-IPN https://orcid.org/0000-0001-5219-7392
  • Yoloxochitl Elizabeth Rodríguez-Montesinos Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional s/n. Col. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23096. México
  • Juan Manuel López-Vivas Universidad Autónoma de Baja California Sur. Boulevard Forjadores s/n, La Paz, Baja California Sur, 23080. México

Palavras-chave:

anticoagulant activity, bioactive, brown seaweed, fucoidan, uronic acids.

Resumo

Background: Brown algae are recognized as a source of sulfated polysaccharides of great economic value and importance in biomedical studies due to their diverse biological activities such as anticoagulant, antioxidant, antiviral, among others. Goals: In this study, an aqueous extract from the brown seaweed Stephanocystis dioica was evaluated to determine its potential anticoagulant activity. Methods: An aqueous extraction was carried out at room temperature to obtain sulfated polysaccharides, which were semi-purified by fractional precipitation with ethanol to obtain three fractions. These fractions were employed in prothrombin time (PT) and activated partial thromboplastin time (aPTT) assays to evaluate anticoagulant activity at different concentrations (6.25-100 µg mL-1). The partial chemical composition (fucose, uronic acids, and sulfates) and SO4/sugar residue ratio were also determined. Results: In the PT assay, at a concentration of 100 µg mL-1, fraction F3 exhibited the greatest coagulation time (76 s), which was four times that of the control. In the aPTT assay, the three fractions extended the control time (28.8 s) to more than 300 s at a concentration of 100 µg mL-1. Partial chemical analysis showed that fractions F1, F2, and F3 are sulfated heteropolysaccharides rich in fucose, with lower concentrations of uronic acids and other sugars. In the infrared spectrum, the observed vibrations at 820 cm-1 indicate a twist of the sulfate group at the equatorial position of the sugar ring at 2-O and/or 3-O positions. Conclusions: The results showed that sulfated polysaccharide from Stephanocystis dioica has potential anticoagulant activity.

Downloads

Referências

Abel-Fattah, A. F., M. M. D. Hussein & H. M. Salem.1974. Some structural features of sargassan, a sulphated heteropolysaccharide from Sargassum linifolium. Carbohydrate Research 33: 19-24. DOI: 10.1016/S0008-6215(00)82936-5

Athukorala, Y., W. K. Jung, T. Vasanthan & Y. J. Jeon. 2006. An anticoagulative polysaccharide from an enzymatic hydrolysate of Ecklonia cava. Carbohydrate Research 66: 184-191. DOI: 10.1016/j.carbpol.2006.03.002

Athukorala, Y., K. W. Lee, S. K. Kim & Y. J. Jeon. 2007. Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea. Bioresource Technology 98: 1711-1716. DOI: 10.1016/j.biortech.2006.07.034

Augustyniak, A., J. Przyborska & H. McMahon. 2024. Differential effects of Fucus vesiculosus fucoidan on fibroblast and macrophage cell lines inflammatory activation. Results in Chemistry 7: 101443. DOI: 10.1016/j.rechem.2024.101443

Awad, N. E., H. M. Motawe, M. A. Selim & A. A. Matloub. 2009. Antitumourigenic polysaccharides isolated from the brown algae, Padina pavonia (L.) Gaill and Hydroclathrus clathratus (C. Agardh) Howe. Medicinal and Aromatic Plant Science and Biotechnology 3: 6-11.

Bociek, S. M. & D. Welti. 1975. The quantitative analysis of uronic acid polymers by infrared spectroscopy. Carbohydrate Research 42: 217-226. DOI: 10.1016/S0008-6215(00)84263-9

Chevolot, L., A. Foucault, F. Chaubet, N. Kervarec, C. Sinquin, A. M. Fisher & C. Boisson-Vidal. 1999. Further data on the structure of brown seaweed fucans: relationships with anticoagulant activity. Carbohydrate Research 319: 154-165. DOI: 10.1016/s0008-6215(99)00127-5

Ciancia, M., I. Quintana & A. S. Cerezo. 2010. Overview of anticoagulant activity of sulfated polysaccharides from seaweeds in relation to their structures, focusing on those of green seaweeds. Current Medicinal Chemistry 17: 2503-2529. DOI: 10.2174/092986710791556069

Cumashi, A., N. A. Ushakova, M. E. Preobrazhenskaya, A. D’Incecco, A. Piccoli, L. Totani, N. Tinari, G. E. Morozevich, A. E. Berman, M. I. Bilan, A. I. Usov, N. E. Ustyuzhanina, A. A. Grachev, C. J. Sanderson, M. Kelly, G. A. Rabinovich, S. Iacobelli & N. E. Nifantiev. 2007. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17: 541-552. DOI: 10.1093/glycob/cwm014

De Lara-Isassi, G. & S. Álvarez-Hernández. 1999. Evaluación de la actividad anticoagulante de algas marinas presentes en las costas del Golfo de México y Caribe mexicano. Revista de la Sociedad Mexicana de Historia Natural 49: 75-82. Available online at: http://hdl.handle.net/11154/143155

Dische, Z. 1955. New color reaction for determination of sugars in polysaccharides. Methods of Biochemical Analysis 2: 313-358. DOI: 10.1002/9780470110188.ch11

Dobashi, K., T. Nishino, M. Fujihara & T. Nagumo. 1989. Isolation and preliminary characterization of fucose-containing sulfated polysaccharides with blood-anticoagulant activity from the brown seaweed Hizikia fusiforme. Carbohydrate Research 194: 315-320. DOI: 10.1016/0008-6215(89)85032-3

Dore, C. M. P. G., M. G. C. Faustino-Alves, L. S. E. Porfírio-Will, T. G. Costa, D. A. Sabry, L. A. R. de Souza-Rêgo, C. M. Accardo, H. A. O. Rocha, L. G. A. Filgueira & E. L. Leite. 2013. A sulfated polysaccharide, fucans, isolated from brown algae Sargassum vulgare with anticoagulant, antithrombotic, antioxidant and anti-inflammatory effects. Carbohydrate Polymers 91: 467-475. DOI: 10.1016/j.carbpol.2012.07.075

Holtkamp, A. D., S. Kelly, R. Ulber & S. Lang. 2009. Fucoidan and fucoidanases–focus on techniques for molecular structure elucidation and modification of marine polysaccharides. Applied Microbiology and Biotechnology 82: 1-11. DOI: 10.1007/s00253-008-1790-x

Inácio, A. R., A. C. Carvalho, C. Oliveira, L. Reys, S. S. Silva, N. M. Neves, A. Martins, R. L. Reis & T. H. Silva. 2020. Sulfated Seaweed Polysaccharides. In: Oliveira, J. M., H. Radhouani & R. L. Reis (Eds.). Polysaccharides of Microbial Origin. Biomedical Applications. Springer, pp. 307-340. DOI: 10.1007/978-3-030-42215-8

Jiang, Z., T. Okimura, T. Yokose, Y. Yamasaki, K. Yamaguchi & T. Oda. 2010. Effect of sulfated fucan, ascophyllan, from the brown alga Ascophyllum nodosum on various cell lines: a comparative study on ascophyllan and fucoidan. Journal of Bioscience and Bioengineering 110: 113-117. DOI: s://doi.org/10.1016/j.jbiosc.2010.01.007

Jiao, G., G. Yu, J. Zhang & H. E. Stephen. 2011. Chemical structures bioactivities of sulfated polysaccharides from marine algae. Marine Drugs 9: 196-223. DOI: 10.3390/md9020196

Li, B., F. Lu, X. Wei & R. Zhao. 2008. Fucoidan: Structure and bioactivity. Molecules 13: 1671-1695. DOI: 10.3390/molecules13081671

Lijour, Y., E. Gentric, E. Deslandes & J. Guezennec. 1994. Estimation of the sulfate content of hydrothermal vent bacterial polysaccharides by Fourier transform infrared spectroscopy. Analytical Biochemistry 220: 244-248. DOI: 10.1006/abio.1994.1334

Liyanage, N. M., D. P. Nagahawatta, T. U. Jayawardena, K. K. A. Sanjeewa, H. H. A. C. K. Jayawrdhana, J. I. Kim & Y. J. Jeon. 2023. Sulfated Polysaccharides from Seaweeds: A Promising Strategy for Combatting Viral Diseases-A Review. Marine Drugs 21(9): 461. DOI: 10.3390/md21090461

Manne, B. K., T. M. Getz, C. E. Hughes, O. Alshehri, C. Dangelmaier, U. P. Naik, S. P. Watson & S. P. Kunapuli. 2013. Fucoidan is a novel platelet agonist for the C-type lectin-like receptor 2 (CLEC-2). Journal of Biological Chemistry 288(11): 7717-7726. DOI: 10.1074/jbc.M112.424473

Matsubara, K. 2004. Recent advances in marine algal anticoagulants. Current Medicinal Chemistry – Cardiovascular & Hematology Agents 2: 13-19. DOI: 10.2174/1568016043477314

Mourão, P. A. S. 2004. Use of sulfated fucans as anticoagulant and antithrombotic agents: future perspectives. Current Pharmaceutical Desing 10: 967-981. DOI: 10.2174/1381612043452730

Muñoz-Ochoa, M., J. I. Murillo-Álvarez, Y. E. Rodríguez-Montesinos, G. Hernández-Carmona, D. L. Arvizu-Higuera, J. Peralta-Cruz & J. Lizardi-Mendoza. 2009. Anticoagulant screening of marine algae from México, and partial characterization of the active sulphated polysaccharide from Eisenia arborea. CICIMAR Oceánides 24: 41-51. DOI: 10.37543/oceanides.v24i1.52

Nishino, T., G. Yokoyama, K. Dobashi, M. Fujihara & T. Nagumo. 1989. Isolation, purification, and characterization of fucose containing sulfated polysaccharides from the brown seaweed Ecklonia kurome and their blood anticoagulant activities. Carbohydrate Research 186: 119-129. DOI: 10.1016/0008-6215(89)84010-8

Patankar, M., S. Oehninger, T. Barnett, R. L. Williams & G. F. Clark. 1993. A revised structure for fucoidan may explain some of its biological activities. Journal of Biological Chemistry 268: 21770-21776. DOI: 10.1016/S0021-9258(20)80609-7

Pradhan, B., S. Patra, R. Nayak, C. Behera, S. R. Dash, S. Nayak, B. B. Sahu, S. K. Bhutia & M. Jena. 2020. Multifunctional role of fucoidan, sulfated polysaccharides in human health and disease: A journey under the sea in pursuit of potent therapeutic agents. International Journal of Biological Macromolecules 164: 4263-4278. DOI: 10.1016/j.ijbiomac.2020.09.019

Ptak, S. H., L. Sanchez, X. Fretté & D. Kurouski. 2021. Complementarity of Raman and Infrared spectroscopy for rapid characterization of fucoidan extracts. Plant Methods 17: 130. DOI: 10.1186/s13007-021-00830-6

Pedroche, F. F. & A. Sentíes. 2020. Diversidad de macroalgas marinas en México. Una actualización florística y nomenclatural. Cymbella 6: 4-55. Available online at: https://cymbella.fciencias.unam.mx/articulos/V6/01/Diversidad_de_macroalgas_marinas_en_Mexico.html

Pereira, M. S., F. R. Melo & P. A. S. Mourão. 2002. Is there correlation between structure and anticoagulant action of sulfated galactans and sulfated fucans? Glycobiology 12: 573-580. DOI: 10.1093/glycob/cwf077

Rioux, L. E., S. L. Turgeon & M. Beaulieu. 2007. Characterization of polysaccharides extracted from brown seaweeds. Carbohydrate Polymers 69: 530-537. DOI: 10.1016/j.carbpol.2007.01.009

Senthilkumar, K., P. Manivasagan, J. Venkatesan & S. K. Kim. 2013. Brown seaweed fucoidan: biological activity and apoptosis, growth signaling mechanism in cancer. International Journal of Biological Macromolecules 60: 366-374. DOI: 10.1016/j.ijbiomac.2013.06.030

Shanmugam, M. & K. H. Mody. 2000. Heparinoid-active sulphated polysaccharides from marine algae as potential blood anticoagulant agents. Current Science 79: 1672-1683. Available online at: https://www.jstor.org/stable/24104127

Silva, T. M. A., L. G. Alves, K. C. S. de Queiroz, M. G. L. Santos, C. T. Marques, S. F. Chavante, H. A. O. Rocha & E. L. Leite. 2005. Partial characterization and anticoagulant activity of a heterofucan from the brown seaweed Padina gymnospora. The Brazilian Journal of Medical and Biological Research 38: 523-533. DOI: 10.1590/S0100-879X2005000400005

Trejo, C. I. 2004. Anticoagulantes: Farmacología, mecanismos de acción y usos clínicos. Cuadernos de Cirugía 18: 83-90. Available online at: http://revistas.uach.cl/index.php/cuadcir/article/view/2322

Wang, Y., M. Xing, Q. Cao, A. Ji, H. Liang & S. Song. 2019. Biological activities of fucoidan and the factors mediating its therapeutic effects: A review of recent studies. Marine Drugs 7(3): 183. DOI: 10.3390/md17030183

Wijesinghe, W. A. J. P. & Y. J. Jeon. 2012. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydrate Polymers 88: 13-20. DOI: 10.1016/j.carbpol.2011.12.029

Yang, L. & L. M. Zhang. 2009. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohydrate Polymers 76: 349-361. DOI: 10.1016/j.carbpol.2008.12.015

Zhang, H. J., W. J. Mao, F. Fang, H. Y. Li, H. H. Sun, Y. Chen & X. H. Qi. 2008. Chemical characteristics and anticoagulant activities of a sulfated polysaccharide and its fragments from Monostroma latissimum. Carbohydrate Polymers 71: 428-434. DOI: 10.1016/j.carbpol.2007.06.012

Zhu, Z., Q. Zhang, L. Chen, S. Ren, P. Xu, Y. Tang & D. Luo. 2010. Higher specificity of the activity of low molecular weight fucoidan for thrombin-induced platelet aggregation. Thrombosis Research 125(5): 419-26. DOI: 10.1016/j.thromres.2010.02.011

Zvyagintseva, T. N., N. M. Shevchenko, A. O. Chizhov, T. N. Krupnova, E. V. Sundukova & V. V. Isakov. 2003. Water-soluble polysaccharides of some far-eastern brown seaweeds. Distribution, structure, and their dependence on the developmental conditions. Journal of Experimental Marine Biology and Ecology 294: 1-13. DOI: 10.1016/S0022-0981(03)00244-2

Downloads

Publicado

2025-04-01

Como Citar

García-Zamora, G. M., Muñoz-Ochoa, M., Arvizu-Higuera, D. L., Rodríguez-Montesinos, Y. E., & López-Vivas, J. M. (2025). Anticoagulant activity of sulfated polysaccharides obtained from the brown seaweed Stephanocystis dioica. HIDROBIOLÓGICA, 35(1). Recuperado de https://hidrobiologica.izt.uam.mx/index.php/revHidro/article/view/1801

Edição

Seção

Artículos

Artigos mais lidos pelo mesmo(s) autor(es)