Relation between the sharpnose shark Rhizoprinodon terranovae in the southern Gulf of Mexico and the average number of sunspots

Autores

  • Rubén Sánchez Trejo Departamento El Hombre y su Ambiente, Universidad Autónoma Metropolitana Xochimilco. Calz. del Hueso 1100, Col. Villa Quietud, Coyoacán, Ciudad de México, 04960. México
  • Norma Sánchez Santillán Departamento El Hombre y su Ambiente, Universidad Autónoma Metropolitana Xochimilco. Calz. del Hueso 1100, Col. Villa Quietud, Coyoacán, Ciudad de México, 04960. México
  • Alfonso Esquivel Herrera Departamento El Hombre y su Ambiente, Universidad Autónoma Metropolitana Xochimilco. Calz. del Hueso 1100, Col. Villa Quietud, Coyoacán, Ciudad de México, 04960. México
  • Javier Aldeco Ramírez

DOI:

https://doi.org/10.24275/uam/izt/dcbs/hidro/2019v29n1/Sanchez

Palavras-chave:

Antillean sharpnose-shark landings, Fast Fourier Transform and Maximum Entropy, Gulf of Mexico, solar activity, time series

Resumo

Background. The Antillean or sharpnose shark is one of the main exemplars of shark species in the commercial catch in southern Gulf of Mexico. Oceanic dynamics on the planet Earth varies year-on-year due to the oscillation of solar radiation; fish abundances (and catches) likely respond to these oscillations. Goals. This study focuses on the analysis of landings variability of the antillean sharpnose shark (Rhizoprionodon terraenovae) in the Mexican coast of the Gulf of Mexico, from 1940 to 2006, and its possible connection with solar activity as assessed by the average sunspot number (Zürich Index). Methods. A polynomial curve by least-squares best fitting was used to eliminate the tendency from the sharpnose shark landings time series. Spectral techniques of Maximum Entropy (ME) and Fast Fourier Transform (FFT) were used to analyze the time series of sharpnose shark landings and the Zürich Index. Results. The time series of sharpnose shark landings showed a remarkable spectral peak with a period of about 12.8 years, while the Zürich Index showed a marked peak at a period of 11.6 years. Cross-correlation revealed a delay between the average number of solar spots and sharpnose shark landings. Conclusions. This work is the first to report such a low frequency variability for landings of the Rh. terraenovae fishery in the Gulf of Mexico, using a particular methodology that can provide information for the design of predictive models in the future. The analyzed landing volumes of the sharpnose shark Rh. terraenovae showed as a result a periodical behavior in coincidence with Wolfs solar activity cycle of 10.6 years.

Downloads

Não há dados estatísticos.

Referências

Bendat , J. S. & A. G. Piersol. 1986. Random Data: Analysis and measurement procedures. 2nd Edition. John Wiley & Sons. New York, USA. 566 p.

Brigham, E. O. 1974. The fast Fourier Transform. Prentice Hall. Inc. Englewood Cliffs. New Jersey, USA. 252 p.

Bulato v, O. A. 1995. Biomass variations of walleye pollock of the Bering Sea in relation to oceanological conditions. In: Beamish, R. J. (Ed.). Climate change and northern fish populations. Canadian Special Publication of Fisheries and Aquatic Science. No. 121. National Research Council of Canada. Ottawa, Canada, pp. 631-640.

Calmet, D., S. Charmasson & F. Blanc. 1984. Application de l’analyse spectrale par maximisation de l’entropie dans la description des séries brèves en écologie marine. Oceanologica Acta 7 (1): 77-86.

Castillo-Géniz, J. L. 1992. Diagnóstico de la pesquería de tiburón en México. INE. Instituto Nacional de la Pesca. Secretaría de Pesca. México. 75 p.

Davydov, I. V. 1986. On the nature of long-term fluctuations in fish abundance and possibilities of their prediction. Dinamika Chislennosti Promyslovskh Zhivotnykh Dal Nevostochnykh Morej. TINRO. Vladivostok, pp. 5-17.

Emery, W. J. & R. E. Thomson. 2004. Data analysis methods in physical oceanography. 2da Edition. Elsevier Science. B. V. Inc. Amsterdam. 654 p.

Francis, R. C. & T. H. Sibley. 1991. Climate change and fisheries: What are the real issues? Northwest Environmental Journal 7 (2): 295-307.

Guisande, C., A. Ulla & P. Thejll. 2004. Solar activity governs abundance of Atlantic Iberian sardine Sardina pilchardus. Marine Ecology Progress Series 269: 297-301. DOI: 10.3354/meps269297

Haigh, J. D. 2003. The effects of solar variability on the Earth’s climate. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 361 (1802): 95-111. DOI:10.1098/rsta.2002.1111

Haigh, J. D., M. Lockwood & M. S. Giampapa . 2005. The sun, solar analogs and the climate. Swiss Society for Astrophysics and Astronomy. Springer. New York, USA. 425 p. DOI: 10.1007/ 3-540-27510-X

Hart mann, J. 1995. The difficulty of tracing the effects of climate change on the fishes of Lake Constance. In: Beamish, R. J. (Ed.). Climate change and northern fish populations. Canadian Special Publication of Fisheries and Aquatic Science. No. 121. National Research Council of Canada. Ottawa, Canada, pp. 261-270.

Hjort , J. 1914. Fluctuations in the great fisheries of Northern Europe: Viewed in the light of biological research. Rapports et Proce`s-Verbaux des Re’unions du Conseil Permanent International Pour l’Exploration de la Mer 20. Copenhage, Denmark. 228 p.

Hoenig, J. M. & S. H. Gruber. 1990. Life-history patterns in the elasmobranchs: Implications for fisheries management. In: Pratt, H. L., S. H. Gruber, & T. Taniuchi (Eds.). Elasmobranchs as living resources: Advances in the biology, ecology, systematics, and the status of the fisheries. NOAA Technical Report NMFS 90. U.S. Department of Commerce. USA, pp. 1-16. also available at: http://spo.nwr.noaa.gov/tr90.pdf

Huato -Soberanis, L. & D. Lluch-Belda. 1987. Mesoscale cycles in the series of environmental indices related to the sardine fishery in the Gulf of California. California Cooperative Oceanic Fisheries Investigation Reports 28: 128-134.

Lawson, C. L. & R. J. Hanson. 1974. Solving least squares problems. Prentice Hall. Series in automatic computation. Englewood Cliffs. New Jersey, USA. 340 p.

Legendre, L. & P. Legendre. 1979. Écologie numérique. Tome 2: La structure des données écologiques. Collection d’Écologie No. 13. Masson, Paris et les Presses de l’Université du Québec. France, pp. 175-206.

Lluch-Cota , D. 2004. El sector pesquero. In: Martínez, J. & A. Fernández (Coords.). Cambio climático: Una visión desde México. Secretaria de Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología. México, pp. 327-335.

Macías-Zamora, R., A. L. Vidaurri-Sotelo & H. Santana -Hernández. 1994. Análisis de la tendencia de captura por unidad de esfuerzo en la pesquería del pez vela en el Pacífico Mexicano. Ciencias Marinas 20 (3): 393-408.

Mart ínez-Cruz, L.E., H. Zea-de la Cruz, J. L. Oviedo-Pérez, L. G. Morales-Parra* & L. I. Balan-Che. 2016. Aspectos biológico pesqueros del cazón tutzún Rhizoprionodon terraenovae, en las costas de Campeche, México. Ciencia Pesquera n.e. 24: 23-35.

Mounta in, D. G. & S. A. Muraws ki. 1992. Variation in the distribution of fish stocks on the northeast continental shelf in relation to their environment, 1980-1989. In: Dickson, R. R., P. Maelkki, G. Radach, R. Saetre & M. P. Sissenwine (Eds.). Hydrobiological variability in the Ices Area, 1980-1989. A symposium held in Mariehamn. No. 195. Copenhagen, Denmark, pp. 424-432.

NOAA. 2007. Annual averages of sunspot numbers (Zürich Index). Solar-Geophysical Data Comprehensive Reports. Available online at: www.ngdc.noaa.gov/stp/Solar/ftpsunspotnumber (downloaded February 03, 2016).

Ohtan i, K. & T. Azumaya. 1995. Influence of interannual changes in ocean conditions on the abundance of walleye pollock (Theragra chalcogramma) in the eastern Bering Sea. In: Beamish, R. J. (Ed.). Climate change and northern fish populations. Canadian Special Publication of Fisheries and Aquatic Science. No. 121. National Research Council of Canada. Ottawa, Canada, pp. 87-95.

Ottersen, G., B. Ådlandsvik & H. Loeng. 1994. Statistical modelling of temperature variability in the Barents Sea. In: Counc. Meet. of the Int. Counc. for the Exploration of the Sea, St. John’s. No. 5. Copenhagen, Denmark, pp. 1-16.

Platt , T. & K. L. Denman. 1975. Spectral analysis in ecology. Annual Review of Ecology and Systematics 6: 189-210.

Rodríguez-De la Cruz, Ma. C., J. L. Castillo-Géniz & J. F. Márquez-Farías. 1996. Evaluación de la pesquería de tiburón del Golfo de México. Informe Final de Proyecto de Investigación. Dirección General de Análisis de Pesquerías. Investigación, Evaluación y Manejo de Recursos Pesqueros del INP. SEMARNAP. CONACyT (Clave de Proyecto 116002-5-1314N-9206). México. 198 p.

Sánchez-Santillán, N. 1999. El cambio global del clima en el Golfo y Caribe Mexicano y su influencia en doce pesquerías de importancia comercial. PhD. Thesis, Universidad Nacional Autónoma de México. México. 593 p.

SEMARNAP. 1940-2006. Anuarios estadísticos de pesca. Secretaría de Medio Ambiente, Recursos Naturales y Pesca. México.

SEMARNAT. 2000. Anuarios estadísticos de pesca. Secretaría de Medio Ambiente. Recursos Naturales y Pesca. México.

Studenetsky, S. A. 1995. The extent of the effect of climate upon fisheries of Russia. In: Beamish, R. J. (Ed.). Climate change and northern fish populations. Canadian Special Publication of Fisheries and Aquatic

Science. No. 121. National Research Council of Canada. Ottawa, Canada, pp. 529-530.

Thresher, R. E. 1994. Climatic cycles may help explain fish recruitment in South East Australia. Australian Fisheries 53: 20-22.

Van Loon, H. & K. Labitzke. 1994. The 10-12 year atmospheric oscillation. Meteorologische Zeitschrift 3: 259-266.

Vanselow, K. H. & K. Ricklefs. 2005. Are solar activity and sperm whale Physeter macrocephalus strandings around the North Sea related? Journal of Sea Research 53 (4): 319-327. DOI: 10.1016/j.seares.2004.07.006

Yang, J., L. Li & S. Xia. 1995. Influence of climate change of living resources in the Offshore Waters of China. In: Beamish, R. J. (Ed.). Climate change and northern fish populations. Canadian Special Publication of Fisheries and Aquatic Science. No. 121. National Research Council of Canada. Ottawa, Canada, pp. 531-535.

Zúñiga, M. J., L. A. Cubillos, & C. Ibáñez. 2008. Un patrón de periodicidad regular en las capturas mensuales de jibia (Dosidicus gigas) a lo largo de la costa de Chile (2002–2005). Ciencias Marinas 34 (1): 91-99.

Downloads

Publicado

2019-10-23

Como Citar

Sánchez Trejo, R., Sánchez Santillán, N., Esquivel Herrera, A., & Aldeco Ramírez, J. (2019). Relation between the sharpnose shark Rhizoprinodon terranovae in the southern Gulf of Mexico and the average number of sunspots. HIDROBIOLÓGICA, 29(1), 9–16. https://doi.org/10.24275/uam/izt/dcbs/hidro/2019v29n1/Sanchez

Edição

Seção

Artículos

Artigos mais lidos pelo mesmo(s) autor(es)