Efecto de fucoidan y alginato en la germinación y el crecimiento de plántulas de frijol mungo
Fucoidan and alginate on mung bean growth
Palabras clave:
Eisenia arborea,, longitud de plántula, longitud de raíz, polisacáridos, Sargassum horridumResumen
Antecedentes. El interés por estudiar los polisacáridos de algas marinas como bioestimulantes del crecimiento de las plantas es reciente, y generalmente se ha centrado en los extractos líquidos de algas marinas por su contenido de compuestos que tienen un efecto positivo en el desarrollo de plantas. Dentro de estos compuestos se encuentran carbohidratos como el alginato y el fucoidan, entre otros. Objetivos. Evaluar el efecto de fucoidan crudo y alginato en la germinación de semillas y su actividad estimulante del crecimiento en plántulas de frijol mungo (Vigna radiata). Métodos. Fucoidan y alginato de Eisenia arborea y Sargassum horridum fueron probadas a seis concentraciones diferentes (0.6, 1.2, 2.5, 5, 10 y 20 mg mL‒1 ) sobre la germinación de semillas y el crecimiento de plántulas de frijol mungo. Resultados. El alginato de ambas especies de algas de este estudio no mostró un efecto significativo sobre el crecimiento de frijol mungo. El fucoidan de S. horridum produjo el mayor efecto en el crecimiento del frijol mungo, incrementando la longitud de la raíz (16.2%) y la longitud total de la plántula (11.9%) a una concentración de 0.6 mg mL‒1 y un incremento en el peso seco de la plántula (31%) a una concentración de 20 mg mL‒1 . Mientras que el fucoidan de E. arborea tuvo el mayor efecto en el crecimiento de brotes (10.5%) y la longitud total (10.7%) en comparación con el control, cuando se aplica a una concentración de 10 mg mL‒1 . Conclusiones. En general, este estudio mostró que el fucoidan tanto de S. horridum como el de E. arborea puede estimular el crecimiento de plántulas y aumentar el porcentaje de germinación de semillas de frijol mungo en comparación con el control.
Descargas
Citas
AOSA (Association of Official Seed Analysts). 2005. In: Rules for testing seed. (Capashew Ed), 4-10, 4-11. Las Cruces, NM.
Battacharyya, D., M. Z. Babgohari, P. Rathor & B. Prithiviraj. 2015. Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae 196: 39-48. DOI: 10.1016/j.scienta.2015.09.012
Bouissil, S., Z. E. Alaoui-Talibi, G. Pierre, H. Rchid, P. Michaud, C. Delattre & C. El Modafar. 2020. Fucoidans of Moroccan brown seaweed as elicitors of natural defenses in date palm roots. Marine Drugs 18(12): 596. DOI: 10.3390/md18120596
Camacho, O. & G. Hernández-Carmona. 2012. Phenology and alginates of two Sargassum species from the Caribbean coast of Colombia. Ciencias Marinas 38(2): 381-393. DOI: 10.7773/cm.v38i2.1963
Castellanos-Barriga, L. G., F. Santacruz-Ruvalcaba, G. Hernández-Carmona, E. Ramírez-Briones & R. M. Hernández-Herrera. 2017. Effect of seaweed extracts from Ulva lactuca on seedling growth of mung bean (Vigna radiata). Journal of Applied Phycology 29: 2479-2488. DOI: 10.1007/s10811-017-1082-x
Chandía, N. P., B. Matsuhiro, E. Mejías & A. Moenne. 2004. Alginic acids in Lessonia vadosa: Partial hydrolysis and elicitor properties of the polymannuronic acid fraction. Journal of Applied Phycology 16(2): 127-133. DOI: 10.1023/B:JAPH.0000044778.44193.a8
Di Filippo-Herrera, D., M. Muñoz-Ochoa, R. M. Hernández-Herrera & G. Hernández-Carmona. 2019. Biostimulant activity of individual and blended seaweed extracts on the germination and growth of the mung bean. Journal of Applied Phycology 31(3): 2025-2037. DOI: 10.1007/s10811-018-1680-2
Drobek, M., M. Frąc & J. Cybulska. 2019. Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress–A review. Agronomy 9(6), 335. DOI: 10.3390/agronomy9060335
EL Boukhari, M. E. M., M. Barakate, Y. Bouhia & K. Lyamlouli. 2020. Trends in seaweed extract based biostimulants: manufacturing process and beneficial effect on soil-plant systems. Plants 9(3): 359. DOI: 10.3390/plants9030359
Ertani, A., O. Francioso, A. Tinti, M. Shiavon, D. Pizzeghello & S. Nardi. 2018. Evaluation of seaweed extracts from Laminaria and Ascophyllum nodosum spp. as biostimulants in Zea mays L. using a combination of chemical, biochemical and morphological approaches. Frontiers in Plant Science 9: 428. DOI: 10.3389/fpls.2018.00428
Falcón, A. B. & J. C. Cabrera. 2007. Actividad enraizadora de una mezcla de oligogaracturónidos en pecíolos de violeta africana (Saintpaulia ionantha). Cultivos Tropicales 28(2): 87-90.
Fitton, H. J., D. S. Stringer, A. Y. Park & S. N. Karpiniec. 2019. Review. Therapies from fucoidan: new developments. Marine Drugs 17(10): 571. DOI: 10.3390/md17100571
González, A., J. Castro, J. Vera & A. Moenne. 2013. Seaweed oligosaccharides stimulate plant growth by enhancing carbon and nitrogen assimilation, basal metabolism, and cell division. Journal of Plant Growth Regulation 32: 443-448. DOI: 10.1007/s00344-012-9309-1
Hasanuzzaman, M. & V. Fotopoulos (eds). 2019. Priming and Pretreatment of Seeds and Seedlings: Implication in Plant Stress Tolerance and Enhancing Productivity in Crop Plants. Springer, Singapore. 604 p.
Hernández-Herrera, R. M., F. Santacruz-Ruvalcaba, J. Zañudo-Hernández & G. Hernández-Carmona. 2016. Activity of seaweed extracts and polysaccharide-enriched extracts form Ulva lactuca and Padina gymnospora as growth promoters of tomato and mung bean plants. Journal of Applied Phycology 28(4): 2549-2560. DOI: 10.1007/s10811-015-0781-4
Hien, N. Q., N. Nagasawa, L. X. Tham, F. Yoshii, V. H. Dang, H. Mitomo, K. Makuuchi & T. Kume. 2000. Growth promotion of plants with depolymerized alginates by irradiation. Radiation Physics and Chemistry 59(1): 97–101. DOI: 10.1016/S0969-806X(99)00522-8
Hong, D.D., H.M. Hien & P.N. Son. 2007. Seaweeds from Vietnam used for functional food, medicine and biofertilizer. Journal of Applied Phycology 19(6): 817-826. DOI: 10.1007/s10811-007-9213-4
Idrees, M., M. Naeem, M. Alam, T. Aftab, N. Hashmi, M. M. A. Khan, Moinuddin & L. Varshney. 2011. Utilizing the -irradiated sodium alginate as a plant growth promoter for enhancing the growth, physiological activities, and alkaloids production in Catharanthus roseus L. Agricultural Sciences in China 10(8): 1213-1221. DOI: 10.1016/S1671-2927(11)60112-0
Iwasaki, K. & Y. Matsubara. 2000. Purification of alginate oligosaccharides with root growth-promoting activity toward lettuce. 2000. Bioscience, Biotechnology, and Biochemestry 64(5): 1067-1070. DOI: 10.1271/bbb.64.1067
Khan, W., U. P. Rayirath, S. Subramanian, M. N. Jithesh, P. Rayorath, D. M. Hodges, A. T. Critchley, J. S. Craigie, J. Norrie & B. Prithiviraj. 2009. Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation 28(4): 386-399. DOI: 10.1007/s00344-009-9103-x
Klarzynski, O., V. Descamps, B. Plesse, J. C. Yvin, M. Kopp, B. Kloareg & B. Fritig. 2003. Sulfated fucan oligosaccharides elicit defense responses in tobacco and local and systemic resistance against tobacco mosaic virus. Molecular Plant-Microbe Interactions 16(2): 115-122. DOI: 10.1094/MPMI.2003.16.2.115
Laporte, D., J. Vera, N. P. Chandía, E. A. Zúñiga, B. Matsuhiro & A. Moenne. 2007. Structurally unrelated algal oligosaccharides differentially stimulate growth and defense against tobacco mosaic virus in tobacco plants. Journal of Applied Phycology 19(1): 79-88. DOI: 10.1007/s10811-006-9114-y
Lapshina, L. A., A. V. Reunov, V. P. Nagorskaya, T. N. Zvyagintseva & N. M. Shevchenko. 2006. Inhibitory effect of fucoidan from brown alga Fucus evanescens on the spread of infection induced by tobacco mosaic virus in tobacco leaves of two cultivars. Russian Journal of Plant Physiology 53(2): 246-251. DOI: 10.1134/S1021443706020154
Koh, H. S. A., J. Lu & W. Zhou. 2019. Structure characterization and antioxidant activity of fucoidan isolated from Undaria pinnatifida grown in New Zealand. Carbohydrate Polymers 212: 178-185. DOI: 10.1016/j.carbpol.2019.02.040
Lim, S. J., W. M. W. Aida, M. Y. Maskat, S. Mamot, J. Ropien & D. M. Mohd. 2014. Isolation and antioxidant capacity of fucoidan from selected Malaysian seaweeds. Food Hydrocolloids 42(Part 2): 280-288. DOI: 10.1016/j.foodhyd.2014.03.007
Lijour, Y., E. Gentric, E. Deslandes & J. Guezennec. 1994. Estimation of the sulfate content of hydrothermal vent bacterial polysaccharides by Fourier transform infrared spectroscopy. Analytical Biochemistry 220(2): 244-248. DOI: 10.1006/abio.1994.1334Get rights and content
Mukherjee, A. & J. S. Patel. 2020. Seaweed extract: biostimulator of plant defense and plant productivity. International Journal of Environmental Science and Technology 17(1): 553-558. DOI: 10.1007/s13762-019-02442-z
Muñoz-Ochoa. M., J. I. Murillo-Álvarez, Y. E. Rodríguez-Montesinos, G. Hernández-Carmona, D. L. Arvizu-Higuera, J. Peralta-Cruz & J. Lizardi-Mendoza. 2009. Anticoagulant screening of marine algae from México, and partial characterization of the active sulphated polysaccharide from Eisenia arborea. CICIMAR Oceánides 24(1): 41-51. DOI: 10.37543/oceanides.v24i1.52
Mzibra, A., A. Aasfar, H. El Arroussi, M. Khouloud, D. Dhiba, I. Meftah Kadmiri & A. Bamouh. 2018. Polysaccharides extracted from Moroccan seaweed: a promising source of tomato plant growth promoters. Journal of Applied Phycology 30(5): 2953-2962. DOI: 10.1007/s10811-018-1421-6
Rachidi, F., R. Benhima, L. Sbabou & H. El Arroussi. 2020. Microalgae polysaccharides bio-stimulating effect on tomato plants: Growth and metabolic distribution. Biotechnology Reports 25: e00426. DOI: 10.1016/j.btre.2020.e00426
Rengasamy, K. R. R., M. G. Kulkarni, W.A. Stirk & J. Van Staden. 2015. Eckol - a new plant growth stimulant from the brown seaweed Ecklonia maxima. Journal of Applied Phycology 27(1): 581-587. DOI: 10.1007/s10811-014-0337-z
Rodríguez-Montesinos, Y. E., D. L. Arvizu-Higuera & G. Hernández-Carmona. 2008. Seasonal variation on size and chemical constituents of Sargassum sinicola Setchell et Gardner from Bahía de La Paz, Baja California Sur, Mexico. Phycological Research 56(1): 33-38. DOI: 10.1111/j.1440-1835.2008.00482.x
Rolland, F., B. Moore & J. Sheen. 2002. Sugar sensing and signaling in plants. Plant Cell 14(Supp. 1): 185-205. DOI: 10.1105/tpc.010455
Salachna, P., M. Grzeszczuk, E. Meller & M. Soból. 2018. Oligo-alginate with low molecular mass improves growth and physiological activity of Eucomis autumnalis under salinity stress. Molecules 23(4): 812. DOI: 10.3390/molecules23040812
Sarfaraz, A., M. Naeem, S. Nasir, M. Idrees, T. Aftab, N. Hashmi, M. M. A. Khan, Moinuddin & L. Varshney. 2011. An evaluation of the effects of irradiated sodium alginate on the growth, physiological activities and essential oil production of fennel (Foeniculum vulgare Mill.). Journal of Medicinal Plants Research 5(1): 15-21. DOI: 10.5897/JMPR.9000071
Sharma, S. H. S, G. Lyons, C. McRoberts, D. McCall, E. Carmichael, F. Andrews, R. Swan, R. McCormack & R. Mellon. 2012. Bio-stimulant activity of brown seaweeds species from Strangford Lough: compositional analyses of polysaccharides and bioassay of extracts using mung bean (Vigno mungo L.) and pak choi (Brassica rapa chinensis L.). Journal of Applied Phycology 24(5): 1081-1091. DOI: 10.1007/s10811-011-9737-5
Van Oosten, M. J., O. Pepe, S. De Pascale, S. Silletti & A. Maggio. 2017. The role of biostimulants and bioeffector as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture 4:5. DOI: 10.1186/s40538-017-0089-5
Yabur, R., Y. Bashan & G. Hernández-Carmona. 2007. Alginate from the macroalgae Sargassum sinicola as a novel source for microbial immobilization material in wastewater treatment and plant growth promotion. Journal of Applied Phycology 19(1): 43-53. DOI: 10.1007/s10811-006-9109-8
Zamani, S., S. Khorasaninejad & B. Kashefi. 2013. The importance role of seaweeds of some characters of plant. International Journal of Agriculture and Crop Sciences 5(16): 1789-1793.
Zhao, Y., Y. Zheng, J. Wang, S. Ma, Y. Yu, W. L. White, S. Yang, F. Yang & J. Lu. 2018. Fucoidan extracted from Undaria pinnatifida: Source for nutraceuticals/functional foods. Marine Drugs 16(9): 321. DOI: 10.3390/md16090321
Zou, P., X. Yang, Y. Yuan, C. Jing, J. Cao, Y. Wang, Y. L. Zhang, C. Zhang & Y. Li. 2021. Purification and characterization of a fucoidan from the brown algae Macrocystis pyrifera and the activity of enhancing salt-stress tolerance of wheat seedlings. International Journal of Biological Macromolecules, 180: 547–558. DOI: 10.1016/j.ijbiomac.2021.03.039
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, HIDROBIOLÓGICA reconoce y respeta el derecho moral de los autores, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Publicar en la revista HIDROBIOLÓGICA tiene un costo de recuperación de $500 pesos mexicanos por página en blanco y negro (aproximadamente 29 dólares americanos) y $1000 pesos por página a color (aproximadamente 58 dólares americanos).
Todos los textos publicados por HIDROBIOLÓGICA sin excepción se distribuyen amparados bajo la licencia Creative Commons 4.0Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en HIDROBIOLÓGICA (por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en HIDROBIOLÓGICA.
Para todo lo anterior, el o los autor(es) deben remitir el formato de Carta-Cesión de la Propiedad de los Derechos de la primera publicación debidamente requisitado y firmado por el autor(es). Este formato se puede enviar por correo electrónico en archivo pdf al correo: enlacerebvistahidrobiológica@gmail.com; rehb@xanum.uam.mx (Carta-Cesión de Propiedad de Derechos de Autor).
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.