Las algas como potenciales estimulantes del crecimiento vegetal para la agricultura en México

  • Rosalba Mireya Hernández-Herrera Laboratorio de Biotecnología, Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Calle Ramón Padilla Sánchez 2100, Col. Nextipac, Zapopan, Jalisco, 45110. México
  • Fernando Santacruz-Ruvalcaba Laboratorio de Biotecnología, Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Calle Ramón Padilla Sánchez 2100, Col. Nextipac, Zapopan, Jalisco, 45110. México
  • Diego Ramón Briceño-Domínguez Laboratorio de Ciencias Básicas, Instituto Tecnológico Superior de Felipe Carrillo Puerto. Carretera a Vigia Chico Kilómetro 1.5, Centro. Felipe Carrillo Puerto, Quintana Roo, 77200. México
  • Dania Andrea Di Filippo-Herrera Laboratorio de Química de Algas Marinas. Departamento de Desarrollo de Tecnologías, Centro Interdisciplinario de Ciencias Marinas (CICIMAR), Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional S/N Col. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23096. México
  • Gustavo Hernández-Carmona Laboratorio de Química de Algas Marinas. Departamento de Desarrollo de Tecnologías, Centro Interdisciplinario de Ciencias Marinas (CICIMAR), Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional S/N Col. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23096. México

Resumen

Antecedentes. Una de las áreas prometedoras en la agricultura es el uso racional de sustancias biológicamente activas como estimulantes del crecimiento de plantas, obtenidos de materias primas locales. En México, las algas marinas pueden ser consideradas como un recurso local económico a lo largo de su costa, que está disponible y en abundancia. Representa un gran potencial para su eventual explotación comercial como bioestimulante del crecimiento de las plantas. En estudios previos se ha enfatizado la importancia de los extractos de algas y su uso con resultados significativos para mejorar la germinación de las semillas, el crecimiento y el rendimiento de las plantas, acrecentando la productividad de los cultivos. Por lo tanto, la búsqueda de extractos efectivos que estimulan el desarrollo de las plantas se considera prioritaria. Objetivos. Mostrar una visión general de la aplicación de extractos de algas marinas en la agricultura mexicana. Resultados. Se muestra la diversidad de la flora algal con potencial como biofertilizante y se presenta una reseña histórica del manejo y regulaciones de cosecha en México. Se describe la industria mexicana de los extractos de las algas con aplicación en la agricultura, incluyendo la composición química de los extractos algales, su eficacia biológica en el crecimiento de las plantas, así como inductores de defensa contra enfermedades causadas por patógenos. Además, se indican las investigaciones actuales del uso de extractos de algas en algunos cultivos. Conclusiones. Las algas marinas de México tienen un alto potencial para el aislamiento de compuestos biológicamente activos que podrían aumentar la productividad agrícola. La información presentada es esencial para que, en un futuro, la agricultura mexicana desarrolle estrategias efectivas del uso de extractos de algas marinas.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Rosalba Mireya Hernández-Herrera, Laboratorio de Biotecnología, Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Calle Ramón Padilla Sánchez 2100, Col. Nextipac, Zapopan, Jalisco, 45110. México

Centro Universitario de Ciencias Biológicas y Agropecuarias

Porfesora-Investigadora

Diego Ramón Briceño-Domínguez, Laboratorio de Ciencias Básicas, Instituto Tecnológico Superior de Felipe Carrillo Puerto. Carretera a Vigia Chico Kilómetro 1.5, Centro. Felipe Carrillo Puerto, Quintana Roo, 77200. México

Laboratorio de Ciencias Básicas

Profesor-Investigador

Dania Andrea Di Filippo-Herrera, Laboratorio de Química de Algas Marinas. Departamento de Desarrollo de Tecnologías, Centro Interdisciplinario de Ciencias Marinas (CICIMAR), Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional S/N Col. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23096. México

Departamento de Desarrollo de Tecnologías

Alumna de Posgrado

Gustavo Hernández-Carmona, Laboratorio de Química de Algas Marinas. Departamento de Desarrollo de Tecnologías, Centro Interdisciplinario de Ciencias Marinas (CICIMAR), Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional S/N Col. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23096. México

Departamento de Desarrollo de Tecnologías

profesor-Investigador

Citas

Aguilar-Rosas, L. E. 1982. Ocurrencia de algas cafés (Phaeophyta) en la bahía Todos Santos, Baja California. Ciencias Marinas 8: 25-34. Available online at: http://www.cienciasmarinas.com.mx/index.php/cmarinas/issue/view/38/showToc

Ali, N., A. Farrell., A. Ramsubhag & J. Jayaraman. 2016. The effect of Ascophyllum nodosum extract on the growth, yield and fruit quality of tomato grown under tropical conditions. Journal of Applied Phycology 28: 1353-1362. DOI:10.1007/s10811-015-0608-3

Calvillo-Unna L. A 2009. Un caso de simulación del federalismo. La ley general de pesca y acuacultura sustentables. Alegatos – Revista Jurídica de la Universidad Autónoma Metropolitana 71: 127-138. https://www.azc.uam.mx/publicaciones/alegatos/pdfs/64/71-08.pdf

Castellanos-Barriga, L. G., F. Santacruz-Ruvalcaba., G. Hernández-Carmona., E. Ramírez-Briones & R. M. Hernández-Herrera. 2017. Effect of seaweed liquid extracts from Ulva lactuca on seedling growth of mung bean (Vigna radiata). Journal of Applied Phycology 29: 2479-2488. DOI:10.1007/s10811-017-1082-x

Briceño-Domínguez, D., G. Hernández-Carmona., M. Moyo., W. Stirk & J. Van Staden. 2014. Plant growth promoting activity of seaweed liquid extracts produced from Macrocystis pyrifera under different pH and temperature conditions. Journal of Applied Phycology 26: 2203-2210. DOI:10.1007/s10811-014-0237-2

Canales-López, B. 1999. Enzimas-algas: posibilidades de su uso para estimular la producción agrícola y mejorar los suelos. Terra 17 (3): 271-276. Available online at: https://chapingo.mx/terra/contenido/17/3/art271-276.pdf

Craigie, J. S. 2011. Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology 23: 321-335. DOI:10.1007/s10811-010-9560-4

DOF Diario Oficial de la Federación. 2012. Plan de Manejo para la Pesquería de Macroalgas en Baja California, México. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. (SAGARPA). Available online at: http://dof.gob.mx/nota_detalle_popup.php?codigo=5280840. (downloaded 14 June 2016).

Fornes, F., M Sánchez-Perales & J.L. Guadiola. 2002. Effect of a seaweed extract on the productivity of ‘de Nules’ Clementine mandarin and navelina orange. Botanica Marina 45: 486-489

García-Sahagún, M. L., A. De Luna Vega., C. Zuñiga-Campa., O. A. Bañuelos-Gutiérrez & M. Silva-Echeverría. 2014. Efecto de algas marinas en el desarrollo de Gerberajamesonii (Asteraceae). e-Cucba 2: 39-45. Available online at: http://e-cucba.cucba.udg.mx/index.php/e-Cucba/article/view/14/pdf_7

Garduño-Solórzano, G., J. L. Godínez-Ortega & M. M. Ortega. 2005. Distribución geográfica y afinidad por el sustrato de las algas verdes (Chlorophyceae) bénticas de las costas mexicanas del Golfo de México y Mar Caribe. Boletín de la Sociedad Botánica de México 76: 61-78. Available online at: http://www.redalyc.org/pdf/577/57707606.pdf

Gireesh, R., C. K. Haridevi & J. Salikutty. 2011. Effect of Ulva lactuca extract on growth and proximate composition of Vigna unguiculata L. Walp. Journal of Research in Biology 8: 624-630. Available online at: http://jresearchbiology.com/Documents/RA0148.pdf.

González, A., J. Castro, J. Vera & A. Moenne. 2013a. Seaweed oligosaccharides stimulate plant growth by enhancing carbon and nitrogen assimilation, basal metabolism, and cell division. Journal of Plant Growth Regulation 32: 443-448. DOI:10.1007/s00344-012-9309-1

González, A., R. A. Contreras & A. Moenne. 2013b. Oligo-carrageenans enhance growth and contents of cellulose, essential oils and polyphenolic compounds in Eucalyptus globulus trees. Molecules 18: 8740-8751. DOI:10.3390/molecules18088740.

Gupta, S. & N. Abu-Ghannam. 2011. Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innovative Food Science & Emerging Technologies 12: 600-609. DOI:10.1016/j.ifset.2011.07.004

Hernández-Alarcón, I. 2014. Evaluación de un extracto alcalino del alga Macrocystis pyrifera (L.) C. Agardh, sobre el crecimiento de vegetales terrestres. Tesis de Licenciatura en Biología Marina. Universidad Autónoma de Baja California Sur. México. 47 p.

Hernández-Garibay, E., J. Guardado-Puentes., J. Bautista-Alcantar & R. Reyes-Tisnado. 2006. Macroalgas del Oceáno Pacífico. In: Cuellar J. (Ed). Sustentabilidad y Pesca Responsable en México. Instituto Nacional de la Pesca, SAGARPA. pp. 235-244.

Hernández-Herrera, R. M., F. Santacruz-Ruvalcaba., M. A. Ruiz-López., J. Norrie & G. Hernández-Carmona. 2014a. Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). Journal of Applied Phycology 26: 619-628. DOI:10.1007/s10811-013-0078-4

Hernández-Herrera, R. M., G. Virgen-Calleros., M. A. Ruiz-López., J. Zañudo-Hernández., J. P. Délano-Frier & C. Sánchez-Hernández. 2014b. Extracts from green and brown seaweeds protect tomato (Solanum lycopersicum) against the necrotrophic fungus Alternaria solani. Journal of Applied Phycology 26: 1607-1614. DOI:10.1007/s10811-013-0193-2

Hernández-Herrera, R. M., F. Santacruz-Ruvalcaba, J. Zañudo-Hernández & G. Hernández-Carmona. 2016. Activity of seaweed extracts and polysaccharide-enriched extracts from Ulva lactuca and Padina gymnospora as growth promoters of tomato and mung bean plants. Journal of Applied Phycology 28: 2549-2560. DOI:10.1007/s10811-015-0781-4

Hong, D. D., H. M. Hien & P. N. Son. 2007. Seaweeds from Vietnam used for functional food, medicine and biofertilizer. Journal of Applied Phycology 19: 817-826. DOI:10.1007/s10811-007-9228-x

Jayaraj, J., A. Wan., M. Rahman & Z. K. Punja. 2008. Seaweed extract reduces foliar fungal diseases on carrot. Crop Protection 10: 1360-1366. DOI:10.1016/j.cropro.2008.05.005

Jayaraman, J & N. Ali. 2015. Use of seaweed extracts for disease management of vegetable crops. In: Ganesan S., Vadivel K., Jayaraman J. (Eds.). Sustainable Crop Disease Management using Natural Products. Oxfordshire, UK, CABI, pp. 160-183. DOI:10.1079/9781780643236.0160

Khan, W., U. P. Rayirath., S. Subramanian., M. N. Jithesh., P. Rayorath., D. M. Hodges., A. T. Critchley., D. Laporte., J. Vera., N. P. Chandía., E. A. Zúñiga., B. Matsuhiro & A. Moenne. 2007. Structurally unrelated algal oligosaccharides differentially stimulate growth and defense against tobacco mosaic virus in tobacco plants. Journal of Applied Phycology 19: 79-88. DOI:10.1007/s10811-006-9114-y

Martínez-Morales, J. S. 2015. Evaluación de extractos de algas marinas como promotores de crecimiento en cultivos terrestres. Tesis de Maestría, CICIMAR-IPN, México. 50 p.

Mattner, S. W., D. Wite., D. A. Riches., I. J. Porter & T. Arioli. 2013. The effect of kelp extract on seedling establishment of broccoli on contrasting soil types in southern Victoria, Australia. Biological Agriculture & Horticulture 29: 258-270. DOI:10.1080/01448765.2013.830276

Nicolás-Álvarez, D. E., L. E. Mateo-Cid., A.C. Mendoza-González., M. Gutiérrez-Ladrón De Guevara & A. Reyes-Chaparro. 2014. Utilization of Seaweed Sargassum liebmannii extract as a stimulant of germination of Pachyrhizus erosus. Journal of Chemical, Biological and Physical Sciences (JCBSC) 4: 56-61.

Ortega, M. M. 1987. Doce años de ficología en México (971-1983). In: Gómez Aguirre. S. y V. Arenas Fuentes (Eds.). Contribuciones en hidrobiología. Memoria de la Reunión Alejandro Villalobos (24 al 26 de octubre de 1983). Universidad Nacional Autónoma de México. México, D.F. pp. 155-186.

Osorio-Tafall, B. F. 1946. Anotaciones sobre algunos aspectos de la hidrobiología Mexicana. Revista de la Sociedad Mexicana de Historia Natural 7:139-165. Available online at: http://repositorio.fciencias.unam.mx:8080/jspui/bitstream/11154/142549/1/7VAnotacionesSobre.pdf

Pacheco-Ruíz, I. & J. A. Zertuche-González. 1996. The commercially valuable seaweeds of the Gulf of California. Botánica Marina 39: 201-206. DOI:10.1515/botm.1996.39.1-6.201

Pedroche, F. F & A. Sentíes. 2003. Mexican marine phycology. Diversity and problems. Hidrobiológica 13: 23-32. Available online at: http://www.scielo.org.mx/pdf/hbio/v13n1/v13n1a3.pdf

Rayorath, P., M. N. Jithesh., A. Farid., W. Khan., R. Palanisamy., S. D. Hankins., A. T. Critchley & B. Prithiviraj. 2008. Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. using a model plant, Arabidopsis thaliana (L.) Heynh. Journal of Applied Phycology 20: 423-429. DOI:10.1007/s10811-007-9280-6

Rebours, C., E. Marinho-Soriano, J. A. Zertuche-González, L. Hayashi, J. A. Vásquez, P. Kradolfer, G. Soriano, R. Ugarte, M. H. Abreu, I. Bay-Larsen, G. Hovelsrud, R. Rødven & D. Robledo. 2014. Seaweeds: an opportunity for wealth and sustainable livelihoods for coastal communities. Journal of Applied Phycology 26: 1939-1951. DOI:10.1007/s10811-014-0304-8

Rengasamy, K. R. R., M. G. Kulkarni, W. A. Stirk & J. Van Staden. 2015a Eckol a new plant growth stimulant from the brown seaweed Ecklonia maxima. Journal of Applied Phycology 27: 581-587. DOI:10.1007/s10811-014-0337-z

Rengasamy, K. R. R., M. G. Kulkarni., W. A. Stirk & J. Van Staden. 2015b. Eckol improves growth, enzyme activities, and secondary metabolite content in maize (Zea mays cv. Border King). Journal of Plant Growth Regulation 34: 410-416. DOI:10.1007/s00344-015-9479-8

Robledo, D., E. Gasca-Leyva & J. Fraga. 2013. Social and economic dimensions of carrageenan seaweed farming in Mexico. In: Valderrama D., Cai J., Hishamunda N., Ridler N. (Eds.). Social and Economic Dimensions of Carrageenan Seaweed Farming. Fisheries and Aquaculture Technical Paper No. 580. Rome, FAO, pp. 185-204.

Robledo, D. & W. Townsend. 2006. Seaweed and mangroves: improving environmental practices in coastal communities to secure sustainable livelihoods. In: Breton Y., D. Brown, E.B. Davey, M. Haughton M & L. Ovares (Eds). Coastal Resource Management in the Wider Caribbean: Resilience, Adaptation, and Community Diversity. Kingston, Jamaica, Ian Randle Publishers; Ottawa, International Development Research Centre 190 p. Available online at: https://www.researchgate.net/publication/256183984_SEAWEEDS_AND_MANGROVES_IMPROVING_ENVIRONMENTAL_PRACTICES_IN_COASTAL_COMMUNITIES_OF_MEXICO_AND_JAMAICA

Robledo-Ramírez, D. & Y. Freile-Pelegrín. 1998. Macroflora marina de interés económico de las costas de Yucatán. In: Benítez H., E. Vega, A. Peña & S. Ávila. (Eds.). Aspectos Económicos Sobre la Biodiversidad de México. México, CONABIO-SEMARNAP, pp. 167-179.

Rothäusler, E., L. Gutow & M. Thiel. 2012. Floating seaweeds and their communities. In: C. Wiencke & K. Bischof (Eds.). Seaweed Biology - Novel Insights into Ecophysiology, Ecology and Utilization, Ecological Studies 219, Berlin Heidelberg, Springer, 21 p. DOI:10.1007/978-3-642-28451-9_17

SAGARPA (Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación). 2012. Reglas de Operación de los Programas de SAGARPA. DOF del 30 November 2012. Available online at: http://inapesca.gob.mx/portal/documentos/publicaciones/30112012%20SAGARPA.pdf (Downloaded 10 May 2016)

Satish, L., S. A. Ceasar, J. Shilpha, S. A. Rency, P. Rathinapriya & M. Ramesh. 2015a. Direct plant regeneration from in vitro-derived shoot apical meristems of finger millet (Eleusine coracana (L.) Gaertn.). In Vitro Cellular & Devolpmental Biology – Plant 51: 192-200. DOI:10.1007/s11627-015-9672-2

Satish, L., R. Rameshkumar, P. Rathinapriya, S. Pandian, A. S. Rency, T. Sunitha & M. Ramesh. 2015b. Effect of seaweed liquid extracts and plant growth regulators on in vitro mass propagation of brinjal (Solanum melongena L.) through hypocotyl and leaf disc explants. Journal of Applied Phycology 27: 993-1002. DOI:10.1007/s10811-014-0375-6

Sharma, H. S., C. Fleming, C. Selby, J. R. Rao & T. Martin. 2014. Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Journal of Applied Phycology 26: 465-490. DOI:10.1007/s10811-013-0101-9

Sunarpi, A., R. Jupri, N. I. Kurnianingsih & A. Nikmatullah. 2010. Effect of seaweed extracts on growth and yield of rice plants. Bioscience 2 (2): 73-77.DOI:10.13057/nusbiosci/n020204

Thirumaran, G., M. Arumugam, R. Arumugam & P. Anantharaman. 2009. Effect of seaweed liquid fertilizer on growth and pigment concentration of Abelmoschus esculentus (I) Medikus. American-Eurasian Journal of Agronomy 2 (2): 57-66. Available online at: https://www.idosi.org/aeja/2(2)09/3.pdf

Turan, M & C. Köse. 2004. Seaweed extracts improve copper uptake of grapevine. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science 54: 213-220. DOI:10.1080/09064710410030311

Vera, J., J. Castro, A. González, H. Barrientos, B. Matsuhiro, P. Arce, G. Zúñiga & A. Moenne. 2011a. Long term protection against tobacco mosaic virus induced by the marine alga oligo-sulphatedgalactan Poly-Ga in tobacco plants. Molecular Plant Pathology 12: 437-447. DOI:10.1111/j.1364-3703.2010.00685.x

Vera, J., J. Castro, A. González & A. Moenne. 2011b. Seaweed polysaccharides and derived oligosaccharides stimulate defense responses and protection against pathogens in plants. Marine Drugs 9: 2514-2525. DOI:10.13057/nusbiosci/n020204

Villarreal-Sánchez, J. A., A. Llyina, L. P. Mendez-Jiménez, V. Robledo-Torres, R. Rodríguez-Herrera, B. Canales-López & J. Rodríguez-Martínez. 2003. Isolation of microbial groups from a seaweed extract and comparison of their effects on a growth of pepper culture (Capsicum annuum L.). Moscow University Chemistry Bulletin 44: 92-96. Available online at: http://www.chem.msu.su/rus/vmgu/031/92.pdf

Vinoth, S., P. Gurusaravanan & N. Jayabalan. 2012a. Effect of seaweed extracts and plant growth regulators on high-frequency in vitro mass propagation of Lycopersicon esculentum L (tomato) through double cotyledonary nodal explant. Journal of Applied Phycology 24:1329-1337. DOI:10.1007/s10811-011-9717-9

Vinoth, S., P. Gurusaravanan & N. Jayabalan. 2012b. Erratum to: effect of seaweed extracts and plant growth regulators on high-frequency in vitro mass propagation of Lycopersicon esculentum L (tomato) through double cotyledonary nodal explant. Journal of Applied Phycology 24: 1339-1340. DOI:10.1007/s10811-011-9748-2

Vinoth, S., P. Gurusaravanan & N. Jayabalan. 2014. Optimization of somatic embryogenesis protocol in Lycopersicon esculentum L. using plant growth regulators and seaweed extracts. Journal of Applied Phycology 26: 1527-1537. DOI:10.1007/s10811-013-0151-z

Zertuche-González, J. A., M. Sánchez-Barredo, J. M. Guzmán-Calderón & Z. Altamirano-Gómez. 2014. Eisenia arborea J.E. Areschoug as abalone diet on an IMTA farm in Baja California, México. Journal of Applied Phycology 26 (2): 957-960. DOI:10.1007/s10811-013-0138-9

Zamani, A., S. Khorasaninejad & B. Kashefi. 2013. The importance role of seaweeds of some characters of plant. International Journal of Agriculture and Crop Sciences 5 (16): 1789-1793.

Zhang, X & R. E. Schmidt. 2000. Hormone-containing products’ impact on antioxidant status of tall fescue and creeping bent grass subjected to drought. Crop Science 40: 1344-1349. DOI:10.2135/cropsci2000.4051344x

Publicado
30-05-2018
Cómo citar
Hernández-Herrera, R. M., Santacruz-Ruvalcaba, F., Briceño-Domínguez, D. R., Di Filippo-Herrera, D. A., & Hernández-Carmona, G. (2018). Las algas como potenciales estimulantes del crecimiento vegetal para la agricultura en México. HIDROBIOLÓGICA, 28(1), 129-140. https://doi.org/10.24275/uam/izt/dcbs/hidro/2018v28n1/HernandezC
Sección
Artículos