Concentration of chemical elements in dry mass of Pontederia crassipes Mart. for use as organic fertilizer in small-scale crops

Autores

  • Leslie Hernández Fernández Centro de Bioplantas. Universidad de Ciego de Ávila, Máximo Gómez Báez https://orcid.org/0000-0002-1939-9790
  • José Carlos Lorenzo Feijoo Centro de Bioplantas. Universidad de Ciego de Ávila, Máximo Gómez Báez
  • Yanier Acosta Centro de Bioplantas. Universidad de Ciego de Ávila, Máximo Gómez Báez
  • Roberto González de Zayas Facultad de Ciencias Técnicas, Universidad de Ciego de Ávila, Máximo Gómez Báez.
  • Ariel E. Turcios Institute of Botany, Leibniz University Hannover. Herrenhäuserstr. 2, Hannover, D-30419. Germany.
  • Sershen Naidoo Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville. South Africa.
  • Jutta Papenbrock Institute of Botany, Leibniz University Hannover. Herrenhäuserstr. 2, Hannover, D-30419. Germany
  • Alejandro García-Moya Centro de Estudios Ambientales de Cienfuegos (CEAC).

Palavras-chave:

Eichhornia crassipes, Pistia stratiotes, lagunas, Cuba

Resumo

Background: The increasing demand and production costs of inorganic fertilizers motivate researchers to explore new ways to obtain organic fertilizers. Plant biomass from Pistia stratiotes L. and Eichhornia crassipes (Mart.) Solms, were used as case studies. Objective: to determine the concentration of 25 chemical elements in the water of two lagoons and in the dry mass of P. stratiotes and E. crassipes (in their dense and non-dense growth condition). Method: Two artificial freshwater lagoons (Vista Alegre and La Turbina) were studied in Ciego de Ávila, Cuba. Inductively Coupled Plasma-Optical Emission Spectrometry was used to determine the chemical elements. Results: The Vista Alegre lagoon was characterized by high levels of Na, while Ca occurred at high concentrations in the La Turbina lagoon. In P. stratiotes, the order of the seven elements with the highest concentrations was as follows: Ca> K>Na>P>S>Al>Mg in the leaves and Ca>Na>K>S>Fe>Al>Mg in the roots. In E. crassipes (dense) the order of the seven dominant elements in terms of concentration were as follows: K>Ca>Na>P>Mg>S>Al in the leaves and Ca >Na>K>Al>S>Fe>Mg in roots. In E. crassipes plants (not dense) with leaves that were the order of the seven dominant elements in terms of concentration was as follows: Ca>K>Na>Al>P>Mg>S in the leaves and Ca>Al>Na>K>S>Fe>P in roots. The dry mass of both species contains primary, secondary macronutrients and micronutrient. Its concentration of heavy metals is below the maximum permissible limits established for fertilizers and crop substrates. Conclusions: The invasive aquatic plants P. stratiotes and E. crassipes can be used as organic fertilizer in crops grown on small plots or in seedbeds. Similar studies should be conducted in other freshwater lagoons in Cuba.

Downloads

Não há dados estatísticos.

Referências

Alexandre, D. S., A. P. Ogura, R. de Almeida-Mohedano & L. B. G. Thibau. 2025. Potential of two floating aquatic macrophytes in improving water quality: A case study in two tropical streams. Revista Brasileira de Ciências Ambientais 60: e2158-e2158. DOI: 10.5327/Z2176-94782158

Ali, H., E. Khan & M. A. Sajad. 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere 91: 869-881. DOI: 10.1016/j.chemosphere.2013.01.075

Bello, A. O., B. S., Tawabini, A. B., Khalil, C. R., Boland & T. A. Saleh. 2018. Phytoremediation of cadmium-, lead-and nickel-contaminated water by Phragmites australis in hydroponic systems. Ecological engineering 120: 126-133. DOI: 10.1016/j.ecoleng.2018.05.035

Begum, S. L., S. M. M. Himaya & S. M. M. S. Afreen. 2022. Potential of water hyacinth (Eichhornia crassipes) as compost and its effect on soil and plant properties: A review. Agricultural Reviews 43 (1): 20-28. DOI: 10.18805/ag.R-184

Boanyah, G. Y. & P. Bondzie-Quaye. 2025. Phytoremediation of fluoride contaminated water. In: Sharma, K. (Ed.). Fluorides in drinking water. Environmental Science and Engineering. Springer, Cham, pp. 333-348. DOI: 10.1007/978-3-031-77247-4_13

Cluis, C. 2004. Junk-greedy greens: phytoremediation as a new option for soil decontamination. BioTeach Journal 2 (6): l-67.

Coetzee, J. A., M. P. Hill, T. Ruiz-Téllez, U. Starfinger & S. Brunel. 2017. Monographs on invasive plants in Europe N° 2: Eichhornia crassipes (Mart.) Solms. Botany Letters 164 (4): 303-326. DOI: 10.1080/23818107.2017.1381041

Dhaliwal, G., N. Gupta, S. Kukal & Meetpal-Singh. 2014. Standardization of automated Vario EL III CHNS analyzer for total carbon and nitrogen determination in plants. Communications in Soil Science and Plant Analysis 45:1316-1324. DOI: 10.1080/00103624.2013.875197

Dissanayaka, D. M. N. S., S. S. Udumann, D. K. R. P. L. Dissanayake, T. D. Nuwarapaksha & A. J. Atapattu. 2023. Review on aquatic weeds as potential source for compost production to meet sustainable plant nutrient management needs. Waste 1: 264-280. DOI: 10.3390/waste1010017

Ehlers, L. J. & R. G. Luthy. 2003. Contaminant bioavailability in soil and sediment. Environmental Science & Technology 37: 295A-302A. DOI: 10.1021/es032524f

Hernández-Fernández, L., Y. Acosta, R. González-De Zayas, A. García-Moya & J. C. Lorenzo Feijoo. 2024a. Invasive aquatic plants as a mixed substrate with red ferralitic soil in vegetable seedbeds. Agronomía Colombiana 42 (2): 1-11. DOI: 10.15446/agron.colomb.v42n2.115670

Hernández-Fernández, L., C. Linares-Rivero, Y. Quiñones-Galvez, J. C. Lorenzo-Feijoo, Y. Acosta & R. González-De Zayas. 2024b. Promising organic compounds in invasive aquatic plants identified in freshwater lagoons in Cuba. Bionatura journal 1 (3):15. DOI: 10.70099/BJ/2024.01.03.15

Hernández-Fernández, L., I. E. Méndez, J. Gerardo-Vázquez, R. González de Zayas & J. C. Lorenzo. 2023. Aquatic plants in the freshwater artificial lagoons in Ciego de Ávila, Cuba. Intropica 18 (1): 37-49. DOI: 10.21676/23897864.4753

Honmura, T. 2000. Studies on the ecology and the utilization of water hyacinth (Eichhornia crassipes (Mart.) Solms). PhD thesis. Kagoshima University. 151 p.

Ito, Y., N. Tanaka, B. R. Keener & S. Lehtonen. 2020. Phylogeny and biogeography of Sagittaria (Alismataceae) revisited: evidence for cryptic diversity and colonization out of South America. Journal of Plant Research 133 (6): 827-839. DOI: 10.1007/s10265-020-01229-5

Latimer, J. G. 2009. The basics of fertilizer calculations for greenhouse crops. Virginia Cooperative Extension. Publication 430-100. Virginia Polytechnic and State University. 6 pp.

Lima-Cazorla, L., S. Olivares­Rieumont, I. Columbie, D. de la Rosa-Mederos & R. Gil-Castillo. 2005. Niveles de plomo, zinc, cadmio y cobre en el Río Almendares, Ciudad Habana, Cuba. Revista Internacional de Contaminación Ambiental 21 (3): 115-124.

Lowe, S., M. Browne, S. Boudjelas & M. De Poorter. 2004. 100 de las especies exóticas invasoras más dañinas del mundo.Una selección del Global Invasive Species Database. Publicado por el Grupo Especialista de Especies Invasoras (GEEI), un grupo especialista de la Comisión de Supervivencia de Especies (CSE) de la Unión Mundial para la Naturaleza (UICN), 12 pp.

Lu, X., M. Kruatrachue, P. Pokethitiyook & K. Homyok. 2004. Removal of cadmium and zinc by water hyacinth, Eichhornia crassipes. Science Asia 30: 93-103.

Maddock, J. E., M. B. Santos & R. S. Marinho. 1988. Eichhornia crassipes as a biological monitor of heavy metals in surface waters. In: Seeliger, U., L. D. de Lacerda & S. R. Patchineelam (Eds.) Metals in coastal environments of Latin America. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 276-285. DOI: 10.1007/978-3-642-71483-2_24

Méndez, J. P., C. A. G. Ramírez, A. D. R. Gutiérrez & F. P. García. 2009. Contaminación y fitotoxicidad en plantas por metales pesados provenientes de suelos y agua. Tropical and Subtropical Agroecosystems 10 (1): 29-44.

Muñiz-Ugarte, O. M. 2022. Contenido de metales pesados como criterio de calidad de suelos. Revista Ingeniería Agrícola 12 (3): 4-9.

Muthusaravanan, S., N. Sivarajasekar, J. S. Vivek, S. Vasudha Priyadharshini, T. Paramasivan, N. Dhakal & M. Naushad. 2020. Research updates on heavy metal phytoremediation: enhancements, efficient post-harvesting strategies and economic opportunities. Green Materials for Wastewater Treatment 191-222. DOI: 10.1007/978-3-030-17724-9_9

Muthusaravanan, S., N. Sivarajasekar, J. S. Vivek, T. Paramasivan, M. Naushad, J. Prakashmaran, V. Gayathri & O. K. Al-Duaij. 2018. Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environmental Chemistry Letters 16: 1339-1359. DOI: 10.1007/s10311-018-0762-3

Niño-Sulkowska, M. S. & A. Lot. 1983. Estudio demográfico del lirio acuático Eichhormia crassipes (Mart) Solms: Dinámica de crecimiento en dos localidades selectas de México. Botanical Sciences (45): 71-83. DOI: 10.17129/botsci.1300

Nouri, J., B., Lorestani, N., Yousefi, N., Khorasani, A. H., Hasani, F., Seif. & M. Cheraghi. 2011. Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead–zinc mine (Hamedan, Iran). Environmental Earth Sciences. 62: 639-644. DOI: 10.1007/s12665-010-0553-z

Oviedo, R. & L. González-Oliva. 2015. Lista nacional de plantas invasoras y potencialmente invasoras en la República de Cuba–2015. Bissea 9: 1-88.

Ramírez, M. G., S. Vázquez, G. I. Méndez & J. Mejía. 2021. Caracterización de abonos orgánicos aplicados a cultivos florícolas en el sur del Estado de México. Biotecnología y Ciencias Agropecuarias 16 (1): 150-161. DOI: 10.29059/cienciauat.v16i1.1518

Rattanawong, Y., N. Kungskulniti, N. Charoenca, L. Benjawan & A. J. Englande. 2022. Water lettuce (Pistia stratiotes L.) as base material for composting. Environment Asia 15 (1): 70-80. DOI: 10.14456/ea.2022.7

DOUE. 2019. Reglamento (UE) 2019/1009 del Parlamento Europeo y del Consejo de 5 de junio de 2019 por el que se establecen disposiciones relativas a la puesta a disposición en el mercado de los productos fertilizantes UE y se modifican los Reglamentos (CE) nº1069/2009 y (CE) nº1107/2009 y se deroga el Reglamento (CE) nº2003/2003.

Rodríguez-Alfaro, M., O. Muñiz-Ugarte, C. W. Araújo-do Nascimento, A. Montero-Álvarez, B. Calero-Martín & F. Martínez-Rodríguez. 2022. Rangos permisibles de Cadmio y Plomo en abonos orgánicos utilizados en la producción de alimentos. Cultivos Tropicales 43 (1): 12 pp.

Sondang, Y., K. Anty & R. Siregar. 2021. Isolation and identification of effective microorganisms from water hyacinth biofertilizer. In: IOP Conference Series: Earth and Environmental Science. 709 (1): 012064. Doi:10.1088/1755-1315/709/1/012064

Sricoth, T., W. Meeinkuirt, P. Saengwilai, J. Pichtel & P. Taeprayoon. 2018. Aquatic plants for phytostabilization of cadmium and zinc in hydroponic experiments. Environmental Science and Pollution Research 25:14964-14976. DOI: 10.1007/s11356-018-1714-y

Tang, Q., A. Cotton, Z. Wei, Y. Xia, T. Daniell & X. Yan. 2022. How does partial substitution of chemical fertiliser with organic forms increase sustainability of agricultural production? Science of The Total Environment 803 (149): 933 pp. DOI: 10.1016/j.scitotenv.2021.149933

Tucker, C. & T. DeBusk. 1983. Seasonal variation in the nitrate content of water hyacinth (Eichhornia crassipes [Mart.] Solms). Aquatic Botany 15 (4): 419-422. DOI: 10.1016/0304-3770(83)90009-8

Valero-Jorge, A., L. Hernández-Fernández, F. Matos-Pupo, S. Buján-Seoane & R., González-De Zayas. 2025. Distribución espaciotemporal de Eichhornia crassipes (Mart.) Solms a través de teledetección en laguna La Turbina, Cuba. Investigaciones Geográficas (83), 75-89. DOI: 10.14198/INGEO.27699

Vesk, P. A. & W. G. Allaway. 1997. Spatial variation of copper and lead concentrations of water hyacinth plants in a wetland receiving urban run-off. Aquatic Botany 59 (1-2): 33-44. DOI: 10.1016/S0304-3770(97)00032-6

Yadav, K. K., N. Gupta, A. Kumar, L. M. Reece, N. Singh, S. Rezania & S. A. Khan. 2018. Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects. Ecological Engineering 120: 274-298. DOI:10.1016/j.ecoleng.2018.05.039

Publicado

2025-12-18

Como Citar

Hernández Fernández, L., Lorenzo Feijoo, J. C., Acosta, Y., González de Zayas, R., Turcios, A. E., Naidoo, S., … García-Moya, A. (2025). Concentration of chemical elements in dry mass of Pontederia crassipes Mart. for use as organic fertilizer in small-scale crops. HIDROBIOLÓGICA, 35(3). Recuperado de https://hidrobiologica.izt.uam.mx/index.php/revHidro/article/view/1814

Edição

Seção

Artículos