Evaluation of some seaweed extracts from Baja Peninsula, Mexico, against plant pathogens.

Autores

  • Ana Laura González-Castro Universidad Autónoma de Baja California Sur, Departamento Académico de Agronomía, Carretera al Sur KM 5.5, Colonia el Mezquitito, CP. 23080, La Paz, Baja California Sur, México https://orcid.org/0000-0002-5591-0816
  • Maurilia Rojas Contreras Universidad Autónoma de Baja California Sur, Departamento Académico de Agronomía, Carretera al Sur KM 5.5, Colonia el Mezquitito, CP. 23080, La Paz, Baja California Sur, México https://orcid.org/0000-0001-7326-1787
  • Mirella Romero Bastidas Universidad Autónoma de Baja California Sur, Departamento Académico de Agronomía, Carretera al Sur KM 5.5, Colonia el Mezquitito, CP. 23080, La Paz, Baja California Sur, México
  • Ruth Noemí Águila Ramírez Instituto Politécnico Nacional Centro Interdisciplinario de Ciencias Marinas s/n. Col. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23096. México https://orcid.org/0000-0001-8433-4558
  • Carlos Rangel Dávalos Universidad Autónoma de Baja California Sur, Departamento Académico de Agronomía, Carretera al Sur KM 5.5, Colonia el Mezquitito, CP. 23080, La Paz, Baja California Sur, México
  • Pablo Misael Arce Amezquita Universidad Autónoma de Baja California Sur, Departamento Académico de Agronomía, Carretera al Sur KM 5.5, Colonia el Mezquitito, CP. 23080, La Paz, Baja California Sur, México

Palavras-chave:

antibacterial, ethanolic extracts, insecticide, Laurencia johnstonii, nematicidal.

Resumo

Background. The widespread use of synthetic pesticides to control pests has generated serious consequences on the environment and human health. Currently, efforts focused on searching for new pesticides with less environmental impact have been doubled. Marine algae synthesize chemical compounds with biological activity, antibacterial and antifungal, and recent studies on brown seaweeds have reported activity against some agricultural pests, insects, and nematodes. However, marine pesticides are an underdeveloped alternative. This represents an opportunity to explore new sources of active compounds. Goals. Evaluate the antibacterial, antifungal, nematicidal, and insecticidal activity of seaweed extracts against pathogens of agricultural importance. Methods. Seaweeds were collected from different locations at the Baja California peninsula, Mexico, and ethanolic extracts were obtained. The antibacterial and antifungal activity against five phytopathogenic strains and Fusarium oxysporum was evaluated by disc diffusion on agar. The nematicidal activity was assessed by egg hatching inhibition on Meloidogyne incognita and insecticidal activity against maize weevil Sitophilus zeamais. Additionally, the total phenolic content of the seaweed extracts was assessed. Results. Regarding the antibacterial potential, Laurencia johnstonii, Asparagopsis taxiformis, and Dictyota dichotoma showed the highest inhibition against all the phytopathogenic strains and the fungus F. oxysporum. Regarding egg hatching inhibition against nematode M. incognita, the extract of Padina concrescens exhibited the highest percentage of inhibition (59 %) followed by L. johnstonii (48 %). All the seaweeds cause the mortality of the insect S. zeamais. However, the highest insecticidal activity was identified on L. johnstonii (71.9%). In general, red and brown seaweeds showed a higher content of total phenolic compounds. Conclusions. This study showed that species of red and brown seaweeds evaluated have a great potential for controlling the phytopathogens evaluated. However, further research is necessary to identify the active compounds and established lethal doses.

Downloads

Biografia do Autor

Carlos Rangel Dávalos, Universidad Autónoma de Baja California Sur, Departamento Académico de Agronomía, Carretera al Sur KM 5.5, Colonia el Mezquitito, CP. 23080, La Paz, Baja California Sur, México

 

 

Referências

Abbott, I. & G. J. Hollenberg. 1976. Marine algae of California. Stanford University Press, Redwood City. 844 p.

Ali, O., A. Ramsubhag & J. Jayaraman, J. 2021. Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants, 10(3): 531. DOI: 10.3390/plants10030531

Arrahman, A., H. Mirsam, N. Djaenuddin, S. Pakki, M. S Saenong & A. Sebayang, 2022. An in-depth study on Sitophilus zeamais Motsch (Coleoptera: Curculionidae) pests on corn plants. Earth and Environmental Science 1107 (1): 1-9. DOI: 10.1088/1755-1315/1107/1/012060

Bianco E. M, L. Pires, G. K. N. Santos, K. A Dutra, T. N. V. Reis, E. Vasconcelos, A. Cocentino & D. Navarro. 2013. Larvicidal activity of seaweeds from northeastern Brazil and of a halogenated sesquiterpene against the dengue mosquito (Aedes aegypti). Industrial Crops and Products 43: 270-275. DOI: 10.1016/j.indcrop.2012.07.032

Deolu‐Ajayi, A. O., I. M. van der Meer, A. van der Werf & R. Karlova. 2022. The power of seaweeds as plant biostimulants to boost crop production under abiotic stress. Plant Cell & Environment 45(9): 2537-2553. DOI: 10.1111/pce.14391

Devi, P.I., M. Manjula & R. V. Bhavani. 2022. Agrochemicals, Environment, and Human Health. Annual Review of Environment and Resources 47(1): 399-421. DOI: 10.1146/annurev-environ-120920- 111015

El-Deen, A. H. N., & A.A. Issa. 2016. Nematicidal properties of some algal aqueous extracts against root-knot nematode, Meloidogyne incognita in vitro. Egyptian Journal of Agronematology 15(1): 67-78.

FAO (Food and Agriculture Organization of the United Nations). 2019. New standards to curb the global spread of plant pests and diseases. Available online at: https://www.fao.org/newsroom/detail/New-standards-to-curb-the-global-spread-of-plant-pests-and-diseases/en

Gatto, A. & M. Chepeliev. 2024. Global food loss and waste estimates show increasing nutritional and environmental pressures. Nature Food 5(2): 136-147.

Gaubert, J., C. E. Payri, C. Vieira, H. Solanki & O. P. Thomas. 2019. High metabolic variation for seaweeds in response to environmental changes: a case study of the brown algae Lobophora in coral reefs. Scientific Reports 9: 993. DOI: 10.1038/s41598-018-38177-z

Genovese, G., C. Faggio, C. Gugliandolo, A. Torre, A. Spano, M. Morabito & T. L. Maugeri. 2012. In vitro evaluation of antibacterial activity of Asparagopsis taxiformis from the Straits of Messina against pathogens relevant in aquaculture. Marine environmental research 73: 1-6. DOI: 10.1016/j.marenvres.2011.10.002

González-Castro A. L., J. L. Torres-Estrada & M. Muñoz-Ochoa M. 2024. Larvicidal and oviposition deterrent activity of sesquiterpenes from the red seaweed Laurencia johnstonii against Aedes aegypti. Journal of Applied Phycology 36: 1555-1560. DOI: 10.1007/s10811-024-03194-1

Gustavsson, J., C. Cederberg, U. Sonesson, R. Van Otterdijk & A. Meybeck (eds.). 2011. Global food losses and food waste. FAO. Rome. 29 p.

Ishii T., T. Nagamine, B. C. Q. Ngunyen & S. Tawata. 2017. Insecticidal and repellent activities of laurinterol from the Okinawan red alga Laurencia nidifica. Records of Natural Products 11: 63-68.

Jiménez, E., F. Dorta, C. Medina, A. Ramírez, I. Ramírez & H. Peña-Cortés, H. 2011. Anti-phytopathogenic activities of macro-algae extracts. Marine Drugs 9(5): 739-756. DOI: 10.3390/md9050739

Kasanah, N., T. Triyanto, D. S. Seto, W. Amelia & A. Isnansetyo. 2015. Antibacterial compounds from red seaweeds (Rhodophyta). Indonesian Journal of Chemistry 15(2): 201-209. DOI: 10.22146/ijc.21215

Khan, S. A., M. Abid & F. Hussain, F. 2015. Nematicidal activity of seaweeds against Meloidogyne javanica. Pakistan Journal of Nematology 33(2): 195-203.

Kwon-Ndung, E.H., T. P. Terna, E. E. Goler & G. Obande. 2022. Post-harvest assessment of infectious fruit rot on selected fruits in Lafia, Nasarawa State Nigeria. Journal of Plant Science and Phytopathology 6: 154-160. DOI: 10.29328/journal.jpsp.1001090

Lakhdar, F., N. Boujaber, K. Oumaskour, O. Assobhei S. & Etahiri. 2015. Inhibitive activity of 17 marine algae from the coast of El Jadida-Morocco against Erwinia chrysanthemi. International Journal of Pharmacy and Pharmaceutical Sciences 7(10): 376-380.

Manilal, A., S. Sujith, G. S. Kiran, J. Selvin, C. Shakir, R. Gandhimathi & A. P. Lipton. 2009. Antimicrobial potential and seasonality of red algae collected from the southwest coast of India tested against shrimp, human and phytopathogens. Annals of Microbiology 59: 207-219. DOI: 10.1007/BF03178319

Mendoza-de Gives, P. 2022. Soil-Borne nematodes: Impact in agriculture and livestock and sustainable strategies of prevention and control with special reference to the use of nematode natural enemies. Pathogens 11(6): 640. DOI: 10.3390/pathogens11060640

Nazarov P. A., D. N. Baleev, M. I. Ivanova, L. M. Sokolova M. V. & Karakozova. 2020. Infectious plant diseases: etiology, current status, problems and prospects in plant protection. Acta Naturae 12(3): 46-59. DOI: 10.32607%2Factanaturae.11026

Negara, B. F. S. P., J. H. Sohn, J. S. Kim & J. S. Choi. 2021. Antifungal and larvicidal activities of phlorotannins from brown seaweeds. Marine Drugs 19(4): 223. DOI: 10.3390/md19040223

Odjo, S., N. Bongianino, J. González Regalado, M. L. Cabrera Soto, N. Palacios-Rojas, N, J. Burgueño & N. Verhulst, N. 2022. Effect of storage technologies on postharvest insect pest control and seed germination in Mexican maize landraces. Insects 13:878. DOI: 10.3390/insects13100878

Pan, S., J. Jeevanandam M. K. & Danquah. 2019. Benefits of algal extracts in sustainable agriculture. In: Hallmann, A. & P. Rampelotto (eds.). Grand challenges in algae biotechnology. Springer, pp.501-534. DOI: 10.1007/978-3-030-25233-5_14

Parab, A., & S. Shankhadarwar. 2022. Growth enhancement of agricultural crops using seaweed liquid fertilizer. Plant Science Today 9(2): 322-330. DOI: 10.14719/pst.1439

Rodríguez, A., M. Beato, V. L. Usseglio, J. Camina, J. A. Zygadlo, J. S. Dambolena & M. P. Zunino. 2022. Phenolic compounds as controllers of Sitophilus zeamais: A look at the structure-activity relationship. Journal of Stored Products Research 99: 102038. DOI: 10.1016/j.jspr.2022.102038

Salvador-Neto O., S. Azevedo-Gomes, A. Ribeiro-Soares, F. L. Silva-Machado, R. I. Samuels, R. Nunes na Fonseca, J. Souza-Menezes, J. L. Cunha-Moares, E. Campos, F. Borges-Mury & J. R. Silva. 2016. Larvicidal potential of the halogenated sesquiterpene (+)-obtusol, isolated from the alga Laurencia dendroidea J. Agardh (Ceramiales: Rhodomelaceae), against the dengue vector mosquito Aedes aegypti (Linnaeus) (Diptera: Culicidae). Marine Drugs 14: 1-14. DOI: 10.3390/md14020020

Sarker, A., Ahmmed, R., Ahsan, S. M., Rana, J., Ghosh, M. K. & R. Nandi. 2024. A comprehensive review of food waste valorization for the sustainable management of global food waste. Sustainable Food Technology 2: 48-69. DOI: 10.1039/D3FB00156C

Shukla, P. S., T. Borza, A. T. Critchley & B. Prithiviraj. 2021. Seaweed-based compounds and products as biostimulants for sustainable protection against plant pathogens. Marine Drugs 19(59):1-32. DOI: 10.3390/md19020059

Sikandar, A., M. Y. Zhang, Y. Y. Wang, X. F. Zhu, X. Y. Liu, H. Y. Fan, Y. H. Xuan, L. J. Chen & Y. X. Duan. 2020. Meloidogyne incognita (root-knot nematode) a risk to agriculture. Applied Ecology & Environmental Research 18(1): 1679-1690. DOI: 10.15666/aeer/1801_16791690

Sikder, M. M. & M. Vestergård. 2020. Impacts of root metabolites on soil nematodes. Frontiers in Plant Science 10: 1792. DOI: 10.3389/fpls.2019.01792

Tanniou, A., L. Vandanjon, M. Incera, E. Serrano-Leon, V. Husa, J. Le Grans, J. L. Nicolas, N. Poupart, N. Kervarec, A. Engelen, R. Walsh, F. Guerard, N. Bourgougnon & V. Stiger-Pouvreau. 2013. Assessment of the spatial variability of phenolic contents and associated bioactivities in the invasive alga Sargassum muticum sampled along its European range from Norway to Portugal. Journal of Applied Phycology 26: 1215–1230. DOI: 10.1007/s10811-013-0198-x

Tewari, S. & S. Sharma. 2019. Molecular techniques for diagnosis of bacterial plant pathogens. In: D. Surajit & R. D. Hirak (eds.). Microbial diversity in the genomic Eea. Academic Press, pp. 481-497. DOI: 10.1016/B978-0-12-814849-5.00027-7

Van Hees, D. H., Olsen, Y. S., Wernberg, T., Van Alstyne, K. L. & G. A. Kendrick. 2017. Phenolic concentrations of brown seaweeds and relationships to nearshore environmental gradients in Western Australia. Marine Biology 164: 74. DOI: 10.1007/s00227-017-3115-z

Veronico, P., & M. T. Melillo. 2021. Marine organisms for the sustainable management of plant parasitic nematodes. Plants 10(2): 369. DOI: 10.3390/plants10020369

Vicente, T. F. L., C. Félix, R. Félix, P. Valentão & M. F. L. Lemos. 2023. Seaweed as a natural source against phytopathogenic bacteria. Marine Drugs 21(1): 23. DOI: 10.3390/md21010023

Vicente, T. F. L., M. F. L. Lemos, R. Félix, P. Valentão & C. Félix. 2021. Marine macroalgae, a source of natural inhibitors of fungal phytopathogens. Journal of Fungi 7(1006): 1-25. DOI: 10.3390/jof7121006

Zhang, Q., J. Zhang, J. Shen, A. Silva, D. A. Dennis & C. J. Barrow. 2006. A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. Journal of Applied Phycology 18(3-5): 445-450. DOI: 10.1007/s10811-006-9048-4

Downloads

Publicado

2025-04-01

Como Citar

González-Castro, A. L., Rojas Contreras, M., Romero Bastidas, M., Águila Ramírez, R. N., Rangel Dávalos, C., & Arce Amezquita, P. M. (2025). Evaluation of some seaweed extracts from Baja Peninsula, Mexico, against plant pathogens. HIDROBIOLÓGICA, 35(1). Recuperado de https://hidrobiologica.izt.uam.mx/index.php/revHidro/article/view/1785

Edição

Seção

Artículos

Artigos mais lidos pelo mesmo(s) autor(es)