Efecto del nivel de proteína en el crecimiento de Goodea atripinnis (Pisces: Goodeidae)

Autores

  • Angélica Vásquez-González Doctorado en Ciencias Agropecuarias, Universidad Autónoma Metropolitana, Unidad Xochimilco. Calzada del Hueso 1100, col. Villa Quietud, CDMX. 04960, México http://orcid.org/0000-0002-0276-902X
  • José L. Arredondo Figueroa Departamento de Zootecnia, Centro de Ciencias Agrícolas, Universidad Autónoma de Aguascalientes. Avenida Universidad 940, Ciudad Universitaria, Villas de la Universidad, Aguascalientes. 20131. México
  • Germán D. Mendoza Martínez Doctorado en Ciencias Agropecuarias, Universidad Autónoma Metropolitana, Unidad Xochimilco. Calzada del Hueso 1100, col. Villa Quietud, CDMX. 04960, México http://orcid.org/0000-0002-8613-6464
  • María T. Viana Castrillón Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California. Carretera Ensenada-Tijuana 3917, Fraccionamiento Playitas, Ensenada, Baja California. 22860. México http://orcid.org/0000-0002-3074-767X
  • Fernando Xicotencatl Plata Pérez Doctorado en Ciencias Agropecuarias, Universidad Autónoma Metropolitana, Unidad Xochimilco. Calzada del Hueso 1100, col. Villa Quietud, CDMX. 04960, México http://orcid.org/0000-0003-0728-7510

DOI:

https://doi.org/10.24275/uam/izt/dcbs/hidro/2018v28n1/Plata

Palavras-chave:

conversión alimenticia, eficiencia proteínica, modelo de Gompertz

Resumo

Antecedentes. Goodea atripinnis es un pez omnívoro que sólo se localiza en el estado de Aguascalientes y su población se encuentra en estatus de amenaza. Para evitar su extinción se están implementando programas de reproducción ex situ; sin embargo, para lograrlo es necesario contar con planes de alimentación que permitan satisfacer las necesidades nutricionales de la especie. Objetivos. Evaluar los efectos de 5 niveles de proteína (25, 30, 35, 40 y 45% PC) en la dieta, velocidad de crecimiento y parámetros productivos de G. atripinnis. Métodos. Se utilizó un diseño de bloques al azar con 5 tratamientos (niveles de proteína) y 3 acuarios por tratamiento, cada uno contenía 20 peces (peso medio: 0.47 ± 0.02 g). El experimento duró 150 días, durante los cuales se registraron el consumo de alimento diariamente y los cambios en peso y longitud de cada pez cada 15 días. Resultados. Se encontraron diferencias en peso final y ganancia de peso total (p <0.05) entre los niveles de proteína. Tanto la tasa de crecimiento como la ingesta total de alimento aumentaron con el nivel alto de proteína. La tasa de conversión de alimento, la eficiencia proteínica y el factor de condición corporal de Fulton (K) mejoraron. El modelo de Gompertz mostró que los altos niveles de proteína aumentaron el peso estándar y que el punto de inflexión se produce en el mismo peso. Conclusiones. Con los niveles altos de proteína el peso estándar se alcanza a una edad más temprana y permite un mayor desarrollo de los peces.

Downloads

Não há dados estatísticos.

Biografia do Autor

José L. Arredondo Figueroa, Departamento de Zootecnia, Centro de Ciencias Agrícolas, Universidad Autónoma de Aguascalientes. Avenida Universidad 940, Ciudad Universitaria, Villas de la Universidad, Aguascalientes. 20131. México

Departmento de Zootecnia, Centro de Ciencias Agrícolas, Universidad Autónoma de Aguascalientes.

Germán D. Mendoza Martínez, Doctorado en Ciencias Agropecuarias, Universidad Autónoma Metropolitana, Unidad Xochimilco. Calzada del Hueso 1100, col. Villa Quietud, CDMX. 04960, México

Doctorado en Ciencias Agropecuarias.

Unidad Xochimilco

Universidad Autónoma Metropolitana

María T. Viana Castrillón, Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California. Carretera Ensenada-Tijuana 3917, Fraccionamiento Playitas, Ensenada, Baja California. 22860. México

profesor titular. Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California.

Fernando Xicotencatl Plata Pérez, Doctorado en Ciencias Agropecuarias, Universidad Autónoma Metropolitana, Unidad Xochimilco. Calzada del Hueso 1100, col. Villa Quietud, CDMX. 04960, México

Profesor Titular C

Responsable del lab. de Ensayos Metabólicos

Departamento de Producción Agrícola y Animal

Universidad Autónoma Metropolitana

U Xochimilco

Referências

AOAC. 1990. Official Methods of Analysis, 15th ed., vol. 1.Arlington, VA, USA. Association of Official Analytical Chemists.

Arredondo-Figueroa, J. J., J. Matsumoto-Soulé, J. T. Ponce-Palafox, K. Shirai-Matsumoto & J. L. Gómez-Márquez. 2012. Effects of protein and lipids on growth performance, feed efficiency and survival rate in fingerlings of bay snook (Petenia splendida) International Journal of Animal and Veterinary Advances 4 (3): 204-213.

Barreto-Curiel, F., G. Parés-Sierra, G. Correa-Reyes, E. Durazo-Beltrán & M. T. Viana. 2016. Total and partial fishmeal substitution by poultry by-product meal (petfood grade) and enrichment with acid fish silage in aquafeeds for juveniles of rainbow trout Oncorhynchus mykiss. Latin American Journal of Aquatic Research 44 (2): 327-335. DOI:10.3856/vol44-issue2-fulltext-13

Benelam, B. 2009. Satiation, satiety and their effects on eating behavior. Nutrition Bulletin 34 (2): 126-173. DOI:10.1111/j.1467-3010.2009.01753.x

Bonaldo, A., P. Di Marco, T. Petochi, G. Marino, L. Parma, R. Fontanillas, W. Koppe, F. Mongile, M. G. Finoia, & P. P. Gatta. 2015. Feeding turbot juveniles Psetta maxima L. with increasing dietary plant protein levels affects growth performance and fish welfare . Aquaculture Nutrition 21 (4): 401-413. DOI:10.1111/anu.12170

Chou, R. L., M. S. Su, & H. Y. Chen. 2001. Optimal dietary protein and lipid levels for juvenile cobia (Rachycentron canadum). Aquaculture 193 (1-2): 81-89. DOI:10.1016/S0044-8486(00)00480-4

Catacutan, M.R. & R. M. Coloso.1995. Effect of dietary protein to energy ratios on growth, survival, and body composition of juvenile Asian seabass, Lates calcarifer. Aquaculture 131 (1-2): 125-133. DOI:10.1016/0044-8486(94)00358-U

Catacutan, M. R., G. E. Pagador & S. Tashima. 2001. Effect of dietary protein and lipid levels and protein to energy ratios on growth, survival and body composition of the mangrove red snapper, Lutjanus argentimaculatus (Forsskal 1775). Aquaculture 32 (10): 811-818. DOI:10.1046/j.1365-2109.2001.00618.x

Domínguez, D. O. & P. Pérez. 2007. The goodeids, endemic fish of central Mexico. CONABIO. Biodiversitas 75: 12-15.

Domínguez-Domínguez, O., R. Pérez-Rodríguez, R. & I. Doadrio. 2008. Análisis comparativo morfológico y genético de diferentes poblaciones de Zoogoneticus quitzeoensis (Cyprinodontiformes Goodeidae) del Centro de México, con la descripción de una especie nueva. Revista Mexicana de Biodiversidad 79 (2): 373- 383. DOI:10.22201/ib.20078706e.2008.002

Froeze, R. 2006. Cube law. Condition factor and weight-length relationships. History, meta-analysis and recommendations. Journal of Applied Ichthyology 22 (4): 241-253. DOI:10.1111/j.1439-0426.2006.00805.xIp,

Y. K., C. K. Lim, S. L. M. Lee, W. P. Wong & S. F. Chew. 2004. Postprandial increases in nitrogenous excretion and urea synthesis in the giant mudskipper Periophthalmodon schlosseri. The Journal of Experimental Biology 207: 3015-3023. DOI:10.1242/jeb.01137

Jia, S., X. Li, S. Zheng & G. Wu. 2017. Amino acids are major energy substrates for tissues of hybrid striped bass and zebrafish. Amino Acids 49 (12): 2053-2063. DOI:10.1007/s00726-017-2481-7.

Kim, L. O., &. S. M. Lee. 2005. Effects of the dietary protein and lipid levels on growth and body composition of bagrid catfish, Pseudobagrus fulvidraco. Aquaculture 243 (1-4): 323-329. DOI:10.5713/ajas.2011.11089

Kim, K. D., S. G. Lim, Y. J. Kang, K. W. Kim & M. H. Son. 2012. Effects of dietary protein and lipid levels on growth and body composition of juvenile far eastern catfish Silurus asotus. Asian-Australasian Journal of Animal Sciences 25 (3): 369-374. DOI:10.5713/ajas.2011.11089

Kulczykow ska, E. & F. J. Sánchez Vázquez. 2010. Neurohormonal regulation of feed intake and response to nutrients in fish: aspects of feeding rhythm and stress. Aquaculture Research 41 (5): 654-667. DOI: 10.1111/j.1365-2109.2009.02350.x

Lee, S. M., D. J. Kim & S. H. Cho. 2002. Effects of dietary protein and lipid level on growth and body composition of juvenile ayu (Plecoglossus altivelis) reared in seawater. Aquaculture Nutrition 8 (1): 53-58. DOI:10.5713/ajas.2011.11089

Lima, A., J. Vilar, J. Batista, N. Kazue & G. Beltráo. 2014. Use of mathematical models in the study of bodily growth in GIFT strain Nile tilapia. Revista Ciencia Agronómica 45 (2): 257-266.

Luo, Z., I. J. Liu, K. S. Mai, L. X. Tian, D. H. Liu & X. Y.Tan. 2004. Optimal dietary protein requirement of grouper Epinephelus coioides juveniles fed isoenergetic diet in floating net cages. Aquaculture Nutrition 10 (4): 247-252. DOI:10.1111/j.1365-2095.2004.00296.x

Martínez, M. J. & P. A. Rojas. 2008. 3.1 Peces: In: La Biodiversidad en Aguascalientes: Estudio de Estado. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Instituto del Medio Ambiente del Estado de Aguascalientes (IMAE), Universidad Autónoma de Aguascalientes (UAA). México. pp. 132-135. Disponible en línea en: http://www.biodiversidad.gob.mx/region/EEB/pdf/ESTUDIO%20DE%20BIODIVERSIDAD%20EN%20AGUASCALIENTES.pdf (consultado el 3 de abril 2018).

Miranda, R., D. Galicia, S. Monks & G. Pulido-Flores. 2009. Weight–length relationships of some native freshwater fishes of Hidalgo State, Mexico. Journal of Applied Ichthyology 25 (5): 620-621. DOI:10.1111/j.1439-0426.2009.01319.x

Miranda, R., D. Galicia, S. Monks & G. Pulido-Flores. 2010. First record of Goodea atripinnis (Cyprinodontiformes: Goodeidae) in the state of Hidalgo (Mexico) and some considerations about its taxonomic position. Hidrobiológica 20 (2): 185-190.

Narnawa re, Y. K. & R. E. Peter. 2002. Influence of diet composition on food intake and neuropeptide Y (NPY) gene expression in goldfish brain. Regulatory Peptides 103 (2-3): 75-83. DOI:10.1016/S0167-0115(01)00342-1

Sarkar, U. K., G. E. Khan, A. Dabas, A. K. Pathak, J. I. Mir, S. C. Rebello, A. Pal & S. P. Singh. (2013). Length weight relationship and condition factor of selected freshwater fish species found in river Ganga, Gomti and Rapti, India. Journal of Environmental Biology 34 (5): 951-956.

Shiau, S. Y. & C. W. Lan. 1996. Optimum dietary protein level and protein to energy ratio for growth of grouper (Epinephelus malabaricus). Aquaculture 145 (1-4): 259-266. DOI:10.1016/S0044-8486(96)01324-5

Silva-Santos, J. R., M. C. Martínez-Saldaña, R. Rico-Martínez, J. L. Gómez-Márquez & J. L. Arredondo-Figueroa. 2016. Reproductive biology of Goodea atripinnis (JORDAN, 1880) (CYPRINODONTIFORMES: GOODEIDAE) under controlled conditions. Journal of Experimental Biology and Agricultural Sciences 4 (2): 180-193. DOI:10.18006/2016.4(2).180.193

Tekínay, A. A. & S. J. Dav ies. 2001. Dietary carbohydrate level influencing feed intake, nutrient utilization and plasma glucose concentration in the rainbow trout, Oncorhynchus mykiss. Turkish Journal of Veterinary and Animal Sciences 25: 657-666.

Thoman, S. E., A. D. Dav is, & R. C. Arnold. 1999. Evaluation of grow out diets with varying protein and energy levels for red drum (Sciaenops ocellatus). Aquaculture 176 (1-4): 343-353. DOI:10.1016/S0044-8486(99)00118-0

Uscanga-Martínez, A., C. A. Álvarez-González, W. M. Contreras-Sánchez, G. Márquez-Couturier, R. Civera-Cerecedo, H. Nolasco-Soria, A. Hernández-Llamas, E. Goytortúa-Bores & F. J. Moyano. 2012. Protein requirement in masculinized and non-masculinized juveniles of Bay Snook Petenia splendida. Hidrobiológica 22 (3): 219-228.

Walter, M., M. Quispe, L. Valenzuela, G. Contreras & J. Zaldívar. 2010. Dietary protein utilization by fingerling of gamitana Colossoma macropomum, fed with isocaloric diets. Revista Peruana de Biología 17 (2): 219-223.

Webb, S. A., J. A. Grav es, C. Macias-Garcia, A. E. Magurran, D. O. Foighil & M. G. Ritchie. 2004. Molecular phylogeny of the livebearing Goodeidae (Cyprinodontiformes). Molecular Phylogenetics and Evolution 30 (3): 527-544. DOI:10.1016/S1055-7903(03)00257-4

Wu, G. 2009. Amino acids: metabolism, functions, and nutrition. Amino Acids 37 (1): 1-17. DOI:10.1007/s00726-009-0269-0

Publicado

2018-05-30

Como Citar

Vásquez-González, A., Arredondo Figueroa, J. L., Mendoza Martínez, G. D., Viana Castrillón, M. T., & Plata Pérez, F. X. (2018). Efecto del nivel de proteína en el crecimiento de Goodea atripinnis (Pisces: Goodeidae). HIDROBIOLÓGICA, 28(1), 121–127. https://doi.org/10.24275/uam/izt/dcbs/hidro/2018v28n1/Plata

Edição

Seção

Artículos