Embryonic development and implication for colonization of three ascidian species with different biogeographic status in Patagonia, Argentina

Autores/as

  • Javier Goldberg Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA). https://orcid.org/0000-0002-9189-6679
  • Juliana Topalian Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad y Ecología, Ecología Marina. Córdoba, Argentina.
  • Agustina Tello Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad y Ecología, Ecología Marina. Córdoba, Argentina.
  • Georgina Pettinari Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad y Ecología, Ecología Marina. Córdoba, Argentina.
  • Mirna Elvira Canio Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad y Ecología, Ecología Marina. Córdoba, Argentina.
  • Tamara Maggioni Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad y Ecología, Ecología Marina. Córdoba, Argentina.. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA).
  • Micaela Ruiz FB2, BreMarE – Bremen Marine Ecology, University of Bremen
  • Anabela Taverna Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad y Ecología, Ecología Marina. Córdoba, Argentina.. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA).
  • Ricardo Sahade Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad y Ecología, Ecología Marina. Córdoba, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA).
  • Marcos Tatián Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad y Ecología, Ecología Marina. Córdoba, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA).

Resumen

Background. Ascidians (Chordata, Tunicata) have a free-swimming larva that develops into a sessile adult. Solitary species generally have external fertilization, although some perform internal fertilization, incubating the larvae before releasing them into water. These reproductive modes influence colonization success by affecting development time, exposure to environmental factors, and predation. Goals. This study compared the embryonic development of three solitary ascidians species from the intertidal zone of Río Negro, Argentina, with different biogeographic status in the area: Ciona robusta (invasive), Paramolgula gregaria (native) and Asterocarpa humilis (cryptogenic; i.e., when the available evidence is insufficient to determine the species’ origin). Methods. Eggs and sperm were extracted from individuals by dissection. Eggs were hydrated and fertilized, except in A. humilis, where cross-fertilization was unsuccessful, and embryos at different stages of development were collected from an incubating individual. Embryonic development, from embryo to larva, was recorded for all three species, including larval size measurements. Results. Ten developmental stages were identified in P. gregaria, and eight stages in both A. humilis and C. robusta, with all species completing their cycles in an urodele larval form. Ciona robusta showed the shortest overall development time, P. gregaria displayed the highest proportion of embryos successfully reaching the motile larval stage, while A. humilis exhibited the largest larva among the studied species. Conclusions. The differences in development time, larval size, and success rates suggest distinct adaptive strategies in each species, potentially influencing their establishment and dispersal capacities. This study provides novel data on the embryonic development of Paramolgula and Asterocarpa, shedding light on reproductive mechanisms that support the colonization and persistence of species with different biogeographic statuses in the Río Negro intertidal zone.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alurralde, G., L. Torre, E. Schwindt, J. C. Castilla & M. Tatián. 2013. A re-evaluation of morphological characters of the invasive ascidian Corella eumyota reveals two different species at the tip of South America and in the South Shetland Islands, Antarctica. Polar Biology 36 (7): 957-968. DOI: 10.1007/s00300-013-1319-3

Berrill, N. J. 1930. Studies in tunicate development. Part I. General physiology of development of simple ascidians. Philosophical Transactions of the Royal Society of London B 218: 37-78.

Berrill, N. J. 1931. Studies in tunicate development. Part II. Abbreviation of development in the Molgulidae. Philosophical Transactions of the Royal Society of London B 219: 281-346.

Bishop, J. D. D., C. Roby, A. L. E. Yunnie, C. A. Wood, L. Lévêque, X. Turon & F. Viard. 2012. The Southern Hemisphere ascidian Asterocarpa humilis is unrecognised but widely established in NW France and Great Britain. Biological Invasions 15: 253-260. DOI: 10.1007/s10530-012-0286-x

Bradbury I. R., B. Laurel, V. R. Snelgrove, P. Bentzen & S. E. Campana. 2008. Global patterns in marine dispersal estimates: the influence of geography, taxonomic category and life history. Proceedings of the Royal Society B 275: 1803-1809. DOI: 10.1098/rspb.2008.0216

Busteros, A., R. Giacosa, H. Lema & M. Zubia. 1998. Hoja Geológica 4166-IV Sierra Grande. Provincia de Río Negro. Programa Nacional de Cartas Geológicas de la República Argentina 1:250.000. Boletín 241. 85 p. y 1 mapa. Buenos Aires, Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales. Disponible en: http://repositorio.segemar.gov.ar/308849217/2844

Byrne, M. 2011. Impact of ocean warming and ocean acidification on marine

Invertebrate life history stages: Vulnerabilities and potential for persistence in a changing ocean. Oceanography and Marine Biology: An Annual Review 49: 1-42. DOI: 10.1201/b11009-2

Carlton, J. T. 1996. Biological invasions and cryptogenic species. Ecology 77: 1653-1655. DOI: 10.2307/2265767

Castilla, J. C. & R. Guiñez. 2000. Disjoint geographical distribution of intertidal and nearshore benthic invertebrates in the Southern Hemisphere. Revista Chilena de Historia Natural 73 (4): 585-603.

Chen. Y., N. Shenkar, P. Ni, Y Lin, S. Li & A. Zhan. 2018. Rapid microevolution during recent range expansion to harsh environments. BMC Evolutionary Biology 18 (1): 187. DOI: 10.1186/s12862-018-1311-1

Clutton, E. A., G. Alurralde & T. Repolho 2021. Early developmental stages of native populations of Ciona intestinalis under increased temperature are affected

By local habitat history. Journal of Experimental Biology 224: jeb233403. DOI: 10.1242/jeb.233403.

Conklin, E. G. 1905. The organization and cell-lineage of the ascidian egg. Proceedings of the Academy of Natural Sciences of Philadelphia 13: 1-119.

Crean, A. J. & D. J. Marshall. 2015. Eggs with larger accessory structures are more likely to be fertilized in both low and high sperm concentrations in Styela

Plicata (Ascidiaceae). Marine Biology 162: 2251-2256.

Dias, P. J., S. S. Lukehurst, T. Simpson, R. M. Rocha, M. A. Tovar-Hernández, C. Wellington, J. I. McDonald, M. Snow & W. J. Kennington. 2021. Multiple introductions and regional spread shape the distribution of the cryptic ascidian Didemnum perlucidum in Australia: an important baseline for management under climate change. Aquatic Invasions 16 (2): 297-313.

Fodor, A. C. A., M. M. Powers, K. Andrykovich, J. Liu, E. K. Lowe, C. T. Brown, A. Di Gregorio, A. Stolfi & B. J. Swalla. 2021. The degenerate tale of ascidian tails. Integrative and Comparative Biology 61 (2): 358-369. DOI: 10.1093/icb/icab022.

Funakoshi, H. M., T. T. Shito, K. Oka & K. Hotta. 2021. Developmental table and three-dimensional embryological image resource of the ascidian Ascidiella aspersa. Frontiers in Cell and Developmental Biology 9: 789046. DOI: 10.3389/fcell.2021.789046

Giachetti, G. B., M. Tatián, E. Schwindt. 2022. Differences in the gonadal cycle between two ascidians species, Ascidiella aspersa and Ciona robusta, help to explain their invasion success in a cold temperate port. Polar Biology 45: 1689-1701. DOI: 10.1007/s00300-022-03100-w

Havenhand, J. N. 1991. Fertilisation and the potential for dispersal of gametes and larvae in the solitary ascidian Ascidia mentula Müller. Ophelia 33: 1-15.

Havenhand, J. N. 1995. Evolutionary ecology of larval types. In: McEdward, L. R. (Ed.). Ecology of marine invertebrate larvae. CRC Press, London, pp. 79-122.

Hirose, E. & N. Sensui. 2021. Substrate selection of ascidian larva: wettability and nano-structures. Journal of Marine Science and Engineering 9: 634. DOI: 10.3390/jmse9060634

Hodin, J., M. C. Ferner, A. Heyland & B. Gaylord. 2018. I feel that! Fluid dynamics and sensory aspects of larval settlement across scales. In: Carrier, T. J., A. M. Reitzel & A. Heyland (Eds.). Evolutionary Ecology of Marine Invertebrate Larvae. Oxford University Press, pp. 190-207. DOI: 10.1093/oso/9780198786962.003.0013

Hoegh-Guldberg, O. & J. S. Pearse. 1995. Temperature, food availability, and the development of marine invertebrate larvae. American Zoologist 35: 415-425.

Hotta, K., K. Mitsuhara, H. Takahashi, K. Inaba, K. Oka, T. Gojobori & K. Ikeo. 2007. A web-based interactive developmental table for the ascidian Ciona intestinalis, including 3D real-image embryo reconstructions: I. From fertilized egg to hatching larva. Developmental Dynamics 236: 1790-1805. DOI: 10.1002/dvdy.21188

Hotta, K., D. Dauga & L. Manni. 2020. The ontology of the anatomy and development of the solitary ascidian Ciona: the swimming larva and its metamorphosis. Scientific Reports 10: 17916. DOI:10.1038/s41598-020-73544-9

Hoyer, J., K. Kolar, A. Athira, M. van den Burgh, D. Dondorp, Z. Liang & M. Chatzigeorgiou. 2024. Polymodal sensory perception drives settlement and metamorphosis of Ciona larvae. Current Biology 34: 1168-1182. DOI: 10.1016/j.cub.2024.01.041

Huber, J. L., K. Burke da Silva, W. R. Bates & B. J. Swalla. 2000. The evolution of anural larvae in molgulid ascidians. Seminars in Cell & Developmental Biology 11: 419-426. DOI: 10.1006/scdb.2000.0195

Jantzen, T. M., R. de Nys & J. N. Havenhand. 2001. Fertilization success and the effects of sperm chemoattractants on effective egg size in marine invertebrates. Marine Biology 138: 1153-1161. DOI: 10.1007/s002270100537

Jeffery, W. R. 1992. A gastrulation center in the ascidian egg. Development 116 ( suppl.): 53-63.

Jeffery, W. R. 1994. A model for ascidian development and developmental modifications during evolution. Journal of the Marine Biological Association of the United Kingdom 74: 35-48.

Lagger, C., V. Häussermann, G. Försterra & M. Tatián. 2009. Ascidians from the southern Chilean Comau Fjord. Spixiana 32 (2): 173-185.

Lagger, C. & M. Tatián. 2013. Two new species of Distaplia (Tunicata: Ascidiacea) from the SW Atlantic, Argentina. Zootaxa 3620 (2): 192-200. DOI: 10.11646/zootaxa.3620.1.10

Lambert, C. C. 2005. Historical introduction, overview, and reproductive biology of the protochordates. Canadian Journal of Zoology 83: 1-7. DOI: 10.1139/Z04-160

Lambert, C.C. 2014. Obtaining gametes and embryos of ascidians. In: Carroll, D. J. & S. A. Stricker (Eds.). Developmental biology of the sea urchin and other marine invertebrates. Methods and protocols. Humana Totowa, New Jersey. DOI: 10.1007/978-1-62703-974-1_2

Lambert, C. C., I. M. Lambert & G. Lambert. 1995. Brooding strategies in solitary ascidians: Corella species from north and south temperate waters. Canadian Journal of Zoology 73: 1666-1671. DOI: 10.1139/z95-198

Lemaire, P. 2009. Unfolding a chordate developmental program, one cell at a time: invariant cell lineages, short-range inductions and evolutionary plasticity in ascidians. Developmental Biology 332: 48-60.

Lemaire, P. 2011. Evolutionary crossroads in developmental biology: the tunicates. Development 138: 2143-2152. DOI: 10.1242/dev.048975

Manríquez, P. H. & J. C. Castilla. 2010. Fertilization efficiency and gamete viability in the ascidian Pyura praeputialis in Chile. Marine Ecology Progress Series 409: 107-119.

Marins, F. O., R. L. M. Novaes, R. M. Rocha & A. O. R. Junqueira. 2010. Non indigenous ascidians in port and natural environments in a tropical Brazilian bay. Zoologia 27 (2): 213-221. DOI: 10.1590/S1984-46702010000200009

Marshall, D. J. & T. F. Bolton. 2007. Effects of size on the development time of non-feeding larvae. Biological Bulletin 212: 6-11.

Munro, E., F. Robin & P. Lemaire. 2006. Cellular morphogenesis in ascidians: how to shape a simple tadpole. Current Opinion in Genetics & Development 16: 399-405.

Nall, C. R., A. J. Guerin & E. J. Cook. 2015. Rapid assessment of marine non-native species in northern Scotland and a synthesis of existing Scottish records. Aquatic Invasions 10: 107-121.

Nishida, H. 1987. Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. III. Up to the tissue restricted stage. Developmental Biology 121: 526-541.

Nishida, H. & N. Satoh. 1983. Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme: I. Up to the eight-cell stage. Developmental Biology 99 (2): 382-394. DOI: 10.1016/0012-1606(83)90288-9

Nydam, M. L., L. M. Stefaniak, G. Lambert, B. Counts & S. López-Legentil. 2022. Dynamics of ascidian-invaded communities over time. Biological Invasions 24: 3489-3507. DOI: 10.1007/s10530-022-02852-0

Ocampo Reinaldo, M. & L. P. Storero. 2007. Síntesis de datos físico-químicos del agua de mar obtenidos durante las campañas del Proyecto PID Nº 371 en el Golfo San Matías y Bahía de San Antonio, durante el periodo 2004 – 2007. Instituto de Biología Marina y Pesquera Almirante Storni, Argentina. 20 p.

Phillippi, A., E. Hamann & P. O. Yund. 2004. Fertilization in an egg-brooding colonial ascidian does not vary with population density. Biological Bulletin 206 (3): 152-160.

Pineda, M. C., C. D. McQuaid, X. Turon, S. López-Legentil, V. Ordóñez & M. Rius. 2012. Tough adults, frail babies: an analysis of stress sensitivity across early life-history stages of widely introduced marine invertebrates. PLoS ONE 7 (10): e46672. DOI: 10.1371/journal.pone.0046672.

Przeslawski, R. 2004. A review of the effects of environmental stress on embryonic

Development within intertidal gastropod egg masses. Molluscan Research 24: 43-63.

Reyna, P.B., G. Alurralde, A. Taverna, E. Calcagno, F. Scarabino, G. Vélez-Rubio, M. Tatián & E. Schwindt. 2023. Hotspot areas of marine introduced species in the Southwestern Atlantic. Marine Ecology Progress Series 725: 15-28. DOI: 10.3354/meps14471

Rhee, J. M., I. Oda-Ishii, Y. J. Passamaneck, A. K. Hadjantonakis & A. Di Gregorio. 2005. Live imaging and morphometric analysis of embryonic development in the ascidian Ciona intestinalis. Genesis 43: 136-147.

Rius, M., M. C. Pineda & X. Turon. 2009. Population dynamics and life cycle of the introduced ascidian Microcosmus squamiger in the Mediterranean Sea. Biological Invasions 11: 2181-2194. DOI: 10.1007/s10530-008-9375-2

Robinson, T. B., B. Havenga, M. van der Merwe & S. Jackson. 2017. Mind the gap – context dependency in invasive species impacts: a case study of the ascidian Ciona robusta. NeoBiota 32: 127-141. DOI: 10.3897/neobiota.32.9373

Rosner, A. & B. Rinkevich. 2024. Harnessing ascidians as model organisms for environmental risk assessment. Environments 11: 232. DOI: 10.3390/environments11110232

Satoh, N. 1994. Developmental biology of ascidians. XVIII. Cambridge University Press, New York. 234 p.

Schwindt, E., J. T. Carlton, J. M. Orensanz, F. Scarabino & A. Bortolus. 2020. Past and future of the marine bioinvasions along the Southwestern Atlantic. Aquatic Invasions 15 (1): 11-29. DOI: 10.3391/ai.2020.15.1.02

Shenkar, N., A. Gittenberger, G. Lambert, M. Rius, R. Moreira da Rocha, B. J. Swalla & X. Turon. 2024. Ascidiacea World Database. Available online at: https://www.marinespecies.org/ascidiacea (downloaded December 18, 2024). DOI: 10.14284/353

Shito, T. T., N. Hasegawa, K. Oka & K. Hotta. 2020. Phylogenetic comparison of egg transparency in ascidians by hyperspectral imaging. Scientific Report 10: 1-12. DOI: 10.1038/s41598-020-77585-y

Taverna, A., M. C. de Aranzamendi, T. Maggioni, G. Alurralde, X. Turon & M. Tatián. 2021. Morphology, genetics, and historical records support the synonymy of two ascidian species and suggest their spread throughout areas of the Southern Hemisphere. Invertebrate Systematics 35: 675-687. DOI: 10.1071/IS20060

Wilson, E. R., K. J. Murphy & R. C. Wyeth. 2022. Ecological review of the Ciona species complex. Biological Bulletin 242 (2): 153-171. DOI: 10.1086/719476

Zhan, A., E. Briski, D. G. Bock, S. Ghabooli & H. J. MacIsaac. 2015. Ascidians as models for studying invasion success. Marine Biology 162 (12): 2449-2470. DOI: 10.1007/s00227-015-2734-5

Descargas

Publicado

2025-12-18

Cómo citar

Goldberg, J., Topalian, J., Tello, A., Pettinari, G., Canio, M. E., Maggioni, T., … Tatián, M. (2025). Embryonic development and implication for colonization of three ascidian species with different biogeographic status in Patagonia, Argentina. HIDROBIOLÓGICA, 35(3). Recuperado a partir de https://hidrobiologica.izt.uam.mx/index.php/revHidro/article/view/1828

Número

Sección

Artículos