The mesophotic ecosystem of archipelago Espíritu Santo as a refuge from climate change

Authors

  • Luis Eduardo Calderon-Aguilera Centro de Investigación Científica y de Educación Superior, Laboratorio de Esclerocronología, Ecología y Pesquerías de la Zona Costera

Keywords:

Deep reef ecology, climate change, conservation, ecosystem services, ecosystem degradation

Abstract

Background. Coastal environments such as the intertidal zone and rocky and coral reefs are exposed to natural disturbances such as tides, storms, hurricanes, and cyclones and human activities such as fishing, tourism, and pollution. The deep reef refuge hypothesis posits that organisms that can inhabit greater depths would be less vulnerable to anthropogenic impacts, greenhouse warming of the sea surface, and ocean acidi-fication caused by the increased partial pressure of CO2. Consequently, deep rocky or coral reefs can function as “insurance” against the effects of climate change. Objective. To analyse biotic and abiotic variables of the mesophotic ecosystem of Archipelago Espíritu Santo to assess it as a refuge against climate change-related disturbances. Methods. Bathymetry, profiles of temperature, salinity, and dissolved oxygen; determination of the euphotic zone, sampling in shallow and deep waters collecting water for analysis of carbonate system, video transects with remotely operated vehicles for the identification of benthic species and estimation of their abundance including those of commercial importance or conservation. Calculation of ecological indices and the reef-functional index. Results. Deepest recorded point was 78m, shallowest mesophotic zone was 11m. Temperature does not show a stratification either in April or in October 2021, but the salinity registers a peak near 30 m depth, and the dissolved oxygen decreases at 20 m. W Aragonite is below 3.0; there is spatial variation in the structural indices of the benthic community, and the reef-functional index is between 0.16 and 0.65. Conclusions. There are sharp spatial variations within the same locality, limiting the assertion that mesophotic ecosystems can serve as a refuge from climate change.

Downloads

Download data is not yet available.

Author Biography

Luis Eduardo Calderon-Aguilera, Centro de Investigación Científica y de Educación Superior, Laboratorio de Esclerocronología, Ecología y Pesquerías de la Zona Costera

INVESTIGADOR TITULAR DE TIEMPO COMPLETO "C"

References

Baker, E.K., K.A. Puglise & P.T. Harris (eds). 2016. Mesophotic coral ecosystems — A lifeboat for coral reefs? The United Nations Environment Programme and GRID-Arendal, Nairobi and Arendal, 98 p.

Bloomberg, J. & D.M. Holstein. 2021. Mesophotic coral refuges following multiple disturbances, Coral Reefs 40(3): 821–834. DOI: 10.1007/ s00338-021-02087-w

Bongaerts, P., T. Ridgway, E. Sampayo & O. Hoegh-Guldberg. 2010. Assessing the ‘Deep Reef Refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 29: 309-327. DOI: 10.1007/s00338-009-0581-x

Bongaerts, P., C. Riginos, R. Brunner, N. Englebert, S.R. Smith & O. Hoegh-Guldberg. 2017. Deep reefs are not universal refuges: reseeding potential varies among coral species.

Science Advances 3(2): e1602373. DOI: 10.1126/sciadv.1602373

Cabral-Tena, R.A., A. López-Pérez, L. Alvarez-Filip, F. J. González-Barrios, L. E.

Calderon-Aguilera & C. Aparicio-Cid. 2020. Functional potential of coral assemblages along a typical Eastern Tropical Pacific reef tract. Ecological Indicators 119. DOI: 10.1016/j.ecolind.2020.106795

Cepeda-Morales, J., G. Gaxiola-Castro, E. Beier & V.M. Godínez. 2013. The mechanisms involved in defining the northern boundary of the shallow oxygen minimum zone in the eastern tropical Pacific Ocean off Mexico. Deep Sea Research Part I: Oceanographic Research Papers 76: 1–12. DOI: 10.1016/j.dsr.2013.02.004

Clark, K. R. & R. N. Gorley. 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E. Plymouth. 190 pp.

Eyal. G., R. Tamir, N. Kramer, L. Eyal-Shaham & Y. Loya. 2019. The Red Sea: Israel. In: Loya Y, K.A. Puglise & T.C.L. Bridge (eds). Mesophotic coral ecosystems. Springer, New York, pp 199-214.

Gamero-Huayhua, D.A. 2017. Estructura de la Comunidad de Abanicos de Mar (Cnidaria: Octocorallia) del Golfo de California. Tesis de Maestría en Ciencias, UABCS, La Paz. 76 pp.

González-Barrios, F.J. & L. Álvarez-Filip. 2018. A framework for measuring coral

species-specific contribution to reef functioning in the Caribbean. Ecological Indicators 95: 877-886. DOI: 10.1016/j.ecolind.2018.08.038

Glynn, P.W. 1996. Coral reef bleaching: facts, hypotheses, and implications. Global Change Biology 2(6): 495-509. DOI: 10.1111/j.1365- 2486.1996.tb00063.x

González-Medina, F. J., O.E. Holguín-Quiñones & G. de la Cruz-Agüero. 2006. Variación espaciotemporal de algunos macroinvertebrados (Gastropoda, Bivalvia y Echinodermata) de fondos someros del Archipiélago Espíritu Santo, Baja California Sur, México. Ciencias Marinas 32(1 A): 33-44. DOI: 10.7773/cm.v32i1.67

Hollarsmith, J. A., G. Ramirez-Ortiz, T. Winquist, M. Velasco-Lozano, K. DuBois, H.

Reyes-Bonilla, K. C. Neumann & E. D. Grosholz. 2020. Habitats and fish communities at mesophotic depths in the Mexican Pacific. Journal of Biogeography 47(7): 1552-1563. DOI: 10.1111/jbi.13842

Keppel, G., K.P. Van Niel, G.W. Wardell-Johnson, C.J. Yates, M. Byrne, L. Mucina, A.G. Schut, S.D. Hopper & S.E. Franklin. 2012. Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography 21(4): 393-404. DOI: 10.1111/j.1466-8238.2011.00686.x

Kleypas, J. A., R.W. Buddemeier, D. Archer, J.P. Gattuso, C. Langdon & B.N. Opdyke. 1999. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs.

Science 284(5411): 118-120. DOI: 10.1126/science.284.5411.118

Lauer, D. A. & M. L. Reaka. 2022. Depth distributions of benthic and pelagic species highlight the potential of mesophotic and deep habitats to serve as marine refugia. Marine Ecology Progress Series 700: 39-52. DOI: 10.3354/meps14180

Lesser, M. P., M. Slattery & J.J. Leichter. 2009. Ecology of mesophotic coral reefs. Journal of Experimental Marine Biology and Ecology 375(1-2): 1-8. DOI:10.1016/j.jembe.2009.05.009

Loiseau, N., S. Villéger, C. Le Bozec, M. Gimenez, S.L. Kawahara & T. Claveri. 2022. Mesophotic reefs are not refugia for neither taxonomic nor functional diversity of reef fishes. Coral Reefs: 1-13. DOI: 10.1007/ s00338-022-02311-1

Loya, Y., G. Eyal, T. Treibitz, M.P. Lesser & R. Appeldoorn. 2016. Theme section on mesophotic coral ecosystems: advances in knowledge and future perspectives. Coral Reefs 35: 1-9. DOI: 10.1007/s00338- 016-1410-7

NASA (National Aeronautics and Space Administration) Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. 2022. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Data; NASA OB. DAAC, Greenbelt, MD, USA. Available online at https://oceancolor.gsfc.nasa.gov/data/aqua/ (downloaded August 13, 2022).

Pérez-Castro, M.A., N. Schubert, G. A. M. De Oca, G. E. Leyte-Morales, G. Eyal & G. Hinojosa-Arango. 2022. Mesophotic Coral Ecosystems in the Eastern Tropical Pacific: The current state of knowledge and the spatial variability of their depth boundaries. Science of the Total Environment: 806. DOI: 10.1016/j.scitotenv.2021.150576

Ramírez-Ortiz, G., H. Reyes-Bonilla, E. F. Balart, D. Olivier, L. Huato-Soberanis, F. Micheli &

G. J. Edgar. 2020. Reduced fish diversity despite increased fish biomass in a Gulf of California Marine Protected Area. PeerJ, 8: e8885. DOI: 10.7717/peerj.8885

SEMARNAT-CONANP. 2014. Programa de Manejo Parque Nacional exclusivamente la zona marina del Archipiélago de Espíritu Santo. Secretaría de Medio Ambiente y Recursos Naturales. Comisión Nacional de Áreas Naturales Protegidas. México. 232 p.

Smith, T.B., P. W. Glynn, J. L. Maté, L. T. Toth & J. Gyory. 2014. A depth refugium from catastrophic coral bleaching prevents regional extinction. Ecology 95(6): 1663-1673.

DOI:10.1890/13-0468.1

Tamir, R., G. Eyal, N. Kramer, J. H. Laverick & Y. Loya. 2019. Light environment drives the shallow‐to‐mesophotic coral community transition. Ecospher 10(9). DOI:10.1002/ecs2.2839

Tripp-Quezada, A., A. Bosch-Callar, A. Tripp-Valdez, M. A. Tripp-Valdez, M. Villalejo-Fuerte & N. Capetillo-Piñar. 2022. Spatial variation of assemblages of soft-bottom benthic mollusks from Espiritu Santo archipelago, Gulf of California, Mexico. Hidrobiológica 32(1): 1-16. DOI: 10.24275/uam/izt/dcbs/hidro/2022v32n1/Tripp

Velasco-Lozano, M. F., G. Ramírez-Ortiz, H. Reyes-Bonilla & J. A. Hollarsmith 2020. Fish assemblages at mesophotic depths in the Pacific: A comparison between continental and oceanic islands of Mexico. Ciencias Marinas 46(4): 321-342. DOI:10.7773/cm.v46i4.3112

Ying, J., M. W. Collins, A. Cai, P. Timmermann, D. Huang Chen & K. Stein. 2022. Emergence of climate change in the tropical Pacific. Nature Climate Change 12(4): 356-364. DOI: 10.1038/s41558-022-01301-z

Published

2023-04-02

How to Cite

Calderon-Aguilera, L. E. (2023). The mesophotic ecosystem of archipelago Espíritu Santo as a refuge from climate change. HIDROBIOLÓGICA, 33(2). Retrieved from https://hidrobiologica.izt.uam.mx/index.php/revHidro/article/view/1725

Issue

Section

Artículos

Most read articles by the same author(s)