Contribution of heterotrophs to secondary calcification in marginal reefs of the Mexican Pacific

Authors

  • J. Fernando Alvarado Rodríguez CENTRO DE INVESTIGACIÓN CIENTÍFICA Y DE EDUCACIÓN SUPERIOR DE ENSENADA, BAJA CALIFORNIA
  • Héctor Nava Laboratorio de Biodiversidad Marina, Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo.
  • Rafael A. Cabral-Tena Departamento de Ecología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada
  • C. Orión Norzagaray-López Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California
  • Luis E. Calderon-Aguilera Departamento de Ecología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada

Keywords:

CaCO3 production, cementation, Gulf of California, sclerobiontsOPEN

Abstract

Background. Sclerobionts (e.g., calcareous algae, bryozoans, polychaetes, mollusks, and barnacles) produce reef calcium carbonate (CaCO3). Their contribution is key to maintaining positive CaCO3 balances, especially in marginal reefs. Objective. To compare the production of CaCO3 by sclerobionts in two marginal reefs of the Mexican Pacific: Las Gatas (LG), in Zihuatanejo Guerrero Bay, and La Llave (LL), in Bahía de Los Angeles (Gulf of California). Methods. CAUs (Calcification/Accretion Units) were used to promote sclerobiont recruitment during two deployment times: 6 and 15 months. Results. The calcification rate was high at six months and then decreased due to rapid colonization and initial growth, followed by a decrease over time. Sclerobionts deposited 1.2 ± 0.4 kg CaCO3 m-2 yr-1 in LG, which represents 7% of the production of branching corals in the Mexican South Pacific (17.2 kg m-2 yr-1), while in LL, they deposited 2.1 ± 0.7 kg CaCO3 m-2 yr-1; equivalent to 20% of the production of massive corals in the area (10.1 kg m-2 yr-1). The groups that deposited most CaCO3were mollusks and bryozoans in LG (up to 0.65 ± 0.16 kg m-2 yr-1) and barnacles in LL (up to 2.32 ± 0.35 kg m-2 yr-1). Conclusions. These results highlight the role of heterotrophs as secondary calcifiers both in LG, a site impacted by anthropogenic activity, and in LL, an area with low anthropogenic impact but high biological productivity associated with upwellings. This finding implies that the environmental conditions at the study sites limit the calcification of primary calcifiers (i.e., corals and CCA) but promote that of secondary calcifiers, with potential geomorphic repercussions

Downloads

Download data is not yet available.

References

Alvarado-Rodríguez, J. F., H. Nava & J. L. Carballo. 2019. Spatio-temporal variation in rate of carbonate deposition by encrusting organisms in different reef microhabitats from Eastern Pacific coral reefs. Journal of the Marine Biological Association of the United Kingdom 99(7): 1495–1505. DOI: 10.1017/S0025315419000638

Alvarado-Rodríguez, J. F., L. E. Calderon-Aguilera, R. A. Cabral-Tena, C. O.

Norzagaray-López, H. Nava, L. Peiffer & R. G. Fernández-Aldecoa. 2022. High sclerobiont

calcification in marginal reefs of the eastern tropical Pacific. Journal of Experimental Marine Biology and Ecology 557: 151800. DOI: 10.1016/j.jembe.2022.151800

Anderson, M. J., R. N. Gorley & K. R. Clarke. 2008. PERMANOVA+ for PRIMER: Guide to software and statistical methods. PRIMER-E Ltd., Plymouth, UK.

Azevedo, F. B. B., G. G. Carloni & L. V. Carvalheira. 2006. Colonization of benthic organisms on different artificial substratum in Ilha Grande bay, Rio de Janeiro, Brazil. Brazilian Archives of Biology and Technology 49(2): 263-275. DOI: 10.1590/S1516-89132006000300012

Beukema, J. J. 1982. Calcimass and carbonate production by molluscs on the tidal flats in the Dutch Wadden Sea: II the edible cockle, cerastoderma edule. Netherlands Journal of Sea Research 15(3-4): 391-405. DOI: 10.1016/0077-7579(82)90066-7

Browne, N. K., M. Cuttler, K. Moon, K. Morgan, C. L. Ross, C. Castro-Sanguino, E. Kennedy,

D. Harris, P. Barnes, A. Bauman, E. Beetham, J. Bonesso, Y. M. Bozec, C. Cornwall, S. Dee,

T. DeCarlo, J. P. D’Olivo, C. Doropoulos, R. D. Evans, B. Eyre, P. Gatenby, M. Gonzalez, S. Hamylton, J. Hansen, R. Lowe, J. Mallela, M. O’Leary, G. Roff, B. J. Saunders & A. Zweilfer. 2021. Predicting Responses of Geo-ecological Carbonate Reef Systems to Climate Change: A Conceptual Model and Review. Oceanography and Marine Biology: An Annual Review (Issue September). DOI: 10.1201/9781003138846-4

Cabral-tena, R. A., A. López-pérez, L. Alvarez-filip, F. J. González-barrios, L. E.

Calderon-aguilera & C. Aparicio-cid. 2020. Functional potential of coral assemblages along a typical Eastern Tropical Pacific reef tract. Ecological Indicators 119(July): 1-10. DOI: 10.1016/j.ecolind.2020.106795

Cortés, J. 2003. Latin American Coral Reefs. J. Cortés (ed.). Primera edición. Elsevier. San Pedro, Costa Rica.

Cortés, J. & H. Reyes-Bonilla. 2017. Human Influences On Eastern Tropical Pacific Coral Communities and Coral Reefs. In P. W. Glynn, D. P. Manzello & I. C. Enochs (eds.). Coral Reefs of the Eastern Tropical Pacific, Coral Reefs of the World 8 (8th ed., Vol. 8). Springer Netherlands, Dordrecht. DOI: 10.1007/978-94-017-7499-4

Dee, S., M. Cuttler, P. Cartwright, J. McIlwain & N. Browne. 2021. Encrusters maintain stable carbonate production despite temperature anomalies among two inshore island reefs of the Pilbara, Western Australia. Marine Environmental Research 169(May): 105386. DOI: 10.1016/j.marenvres.2021.105386

dos Reis, V. M., C. S. Karez, R. Mariath, F. C. de Moraes, R. T. de Carvalho, P. S. Brasileiro,

R. da G. Bahia, T. M. da C. Lotufo, L. V. Ramalho, R. L. de Moura, R. B. Francini-Filho, G. H. Pereira-Filho, F. L. Thompson, A. C. Bastos, L. T. Salgado & G. M. Amado-Filho. 2016. Carbonate Production by Benthic Communities on Shallow Coralgal Reefs of Abrolhos Bank, Brazil. PloS One 11(4): e0154417. DOI: 10.1371/journal. pone.0154417

Drenkard, E. J., A. L. Cohen, D. C. McCorkle, S. J. de Putron, V. R. Starczak & A. E. Zicht. 2013. Calcification by juvenile corals under heterotrophy and elevated CO2 . Coral Reefs 32(3): 727-735. DOI: 10.1007/ s00338-013-1021-5

Edmunds, P. J. 2011. Zooplanktivory ameliorates the effects of ocean acidification on the reef coral Porites spp. Limnology and Oceanography 56(6): 2402-2410. DOI: 10.4319/lo.2011.56.6.2402

Fabricius, K. E. 2005. Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. Marine Pollution Bulletin 50(2): 125-146. DOI: 10.1016/j.marpolbul.2004.11.028

Findlay, H. S., H. L. Wood, M. A. Kendall, S. Widdicombe, J. I. Spicer & R. J. Twitchett. 2011. Comparing the impact of high CO2 on calcium carbonate structures in different marine organisms. Marine Biology Research 7(6): 565-575. DOI: 10.1080/17451000.2010.547200

Fox, J. & S. Weisberg. 2019. An R Companion to Applied Regression. Third Edition. Thousand Oaks CA. https://socialsciences.mcmaster.ca/ jfox/Books/Companion/%0A

Gaxiola-Castro, G., S. Álvarez-Borrego & R. A. Schwartzlose. 1978. El sistema de bióxido de carbono en el Golfo de California. Ciencias Marinas 5(2): 25-40.

Geraci, J. B., C. Amrhein & C. C. Goodson. 2008. Barnacle growth rate on artificial substrate in the Salton Sea, California. Hydrobiologia 604(1): 77-84. DOI: 10.1007/s10750-008-9309-0

Glynn, P. W., D. P. Manzello & I. C. Enochs. 2017. Coral Reefs od the Eastern Tropical Pacific: Persistence & Loss in a Dynamic Environment. In P. W. Glynn, D. P. Manzello & I. C. Enochs (eds.). Coral Reefs of The World. Springer Nature. DOI: 10.1007/BF01771896

Goreau, T. F. 1963. Calcium carbonate deposition by coralline algae and corals in relation to their roles as reef-builders. Annals New York Academy of Sciences 109: 127-167. DOI: 10.1111/j.1749- 6632.1963.tb13465.x

Granja-Fernández, M. R. & R. A. López-Pérez. 2008. Sedimentación en comunidades arrecifales de Bahías de Huatulco, Oaxaca, México. Revista de Biologia Tropical 56(3): 1179-1187.

Halfar, J., L. Godinez-Orta, M. Mutti, J. E. Valdez-Holguín & J. M. Borges. 2004. Nutrient and temperature controls on modern carbonate production: An example from the Gulf of California, Mexico. Geology 32(3): 213-216. DOI: 10.1130/G20298.1

Hallock, P. 2001. Coral reefs, carbonate sediments, nutrients, and global change. In S. GD (ed.). The history and sedimentology of ancient reef systems. Kluwer Academic/Plenum, New York, USA.

Hepburn, L. J., P. Blanchon, G. Murphy, L. Cousins & C. T. Perry. 2014. Community structure and palaeoecological implications of calcareous encrusters on artificial substrates across a Mexican Caribbean reef. Coral Reefs 34(1): 189-200. DOI: 10.1007/s00338-014-1227-1

Hernández-Ayón, J. M., C. Chapa-Balcorta, F. Delgadillo-Hinojosa, V. F. Camacho-Ibar, M.

A. Huerta-Díaz, E. Santamaría-del-Angel, S. Galindo-Bect & J. A. Segovia-Zavala. 2013. Dynamics of dissolved inorganic carbon in the Midriff Islands of the Gulf of California: Influence of water masses. Ciencias Marinas 39(2): 183-201. DOI: 10.7773/cm. v39i2.2243

Huot, Y., M. Babin, F. Bruyant, C. Grob, M. S. Twardowski & H. Claustre. 2007. Does chlorophyll a provide the best index of phytoplankton biomass for primary productivity studies?. Biogeosciences Discussions 4(2): 707-745.

Jackson, J. B. C. 1977. Competition on Marine Hard Substrata: The Adaptive Significance of Solitary and Colonial Strategies. The American Naturalist 111(980): 743-767.

Kennedy, E., A. Ordoñez, B. Lewis & G. Diaz-Pulido. 2017. Comparison of recruitment tile materials for monitoring coralline algae responses to a changing climate. Marine Ecology Progress Series 569(1): 129- 144. DOI: 10.3354/meps12076

Kenyon, T. M., C. Doropoulos, K. Wolfe, G. E. Webb, S. Dove, D. Harris & P. J. Mumby. 2022. Coral rubble dynamics in the Anthropocene and implications for reef recovery.

Limnology and Oceanography 9999(2022): 1-38. DOI: 10.1002/lno.12254

Kuffner, I. B., T. D. Hickey & J. M. Morrison. 2013. Calcification rates of the massive coral Siderastrea siderea and crustose coralline algae along the Florida Keys (USA) outer-reef tract. Coral Reefs 32: 987- 997. DOI: 10.1007/s00338-013-1047-8

Liñán-Cabello, M. A., A. Olivos-Ortiz, S. Quijano-Scheggia, D. Muñiz-Anguiano, M. L. Reséndiz-Flores & C. D. Ortega-Ortiz. 2016. Effects of terrestrial runoff on the coral communities in Santiago Bay, Colima, mexican Pacific Coast. Revista de Biologia Tropical 64(3): 1185-1200.

Lombardi, C., P. D. Taylor & S. Cocito. 2014. Bryozoan Constructions in a Changing Mediterranean Sea. In S. Goffredo & Z. Dubinsky (eds.). The Mediterranean Sea: Its History and Present Challenges. Springer Netherlands, Dordrecht. DOI: 10.1007/978-94-007-6704-1

López-Pérez, R. A., L. E. Calderón-Aguilera, H. Reyes-Bonilla, J. D. Carriquiry, P.

Medina-Rosas, A. L. Cupul-Magaña, M. D. Herrero-Pérezrul, H. A. Hernández-Ramírez, M. Á. Ahumada-Sempoal & B. M. Luna-Salguero. 2012. Coral communities and reefs from Guerrero, Southern Mexican Pacific. Marine Ecology 33(4): 407-416. DOI: 10.1111/j.1439- 0485.2011.00505.x

Mallela, J. 2007. Coral reef encruster communities and carbonate production in cryptic and exposed coral reef habitats along a gradient of terrestrial disturbance. Coral Reefs 26(4): 775-785. DOI: 10.1007/s00338-007-0260-8

Mallela, J. 2013. Calcification by Reef-Building Sclerobionts. PLoS ONE 8(3): 1-12. DOI: 10.1371/journal.pone.0060010

Mallela, J. & C. T. Perry. 2007. Calcium carbonate budgets for two coral reefs affected by different terrestrial runoff regimes, Rio Bueno, Jamaica. Coral Reefs 26(1): 129-145. DOI: 10.1007/s00338-006- 0169-7

Manzello, D. P., J. A. Kleypas, D. A. Budd, C. M. Eakin, P. W. Glynn & C. Langdon. 2008. Poorly cemented coral reefs of the eastern tropical Pacific: Possible insights into reef development in a high-CO2 world. Proceedings of the National Academy of Sciences of the United States of America 105(30): 10450-10455. DOI: 10.1073/ pnas.0712167105

Martindale, W. 1976. Calcareous Encrusting Organisms of the Recent and Pleistocene Reefs of Barbados, West Indies. Ph.D. Thesis. University of Edinburgh, 141 pp.

Martínez-Fuentes, L. M., C. O. Norzagaray-López, J. M. Hernández-Ayón, M. E.

Solana-Arellano, A. G. Uribe-López, J. A. Valdivieso-Ojeda, V. Camacho-Ibar, A. Mejía-Trejo,

F. Delgadillo-Hinojosa & R. A. Cabral-Tena. 2022. Influence of the advection of water masses in the Ballenas Channel on the CO2 system in Bahía de los Angeles (Mexico). Regional Studies in Marine Science 55: 102505. DOI: 10.1016/j. rsma.2022.102505

Matsuda, S. 1989. Succession and growth rates of encrusting crustose coralline algae (Rhodophyta, Cryptonemiales) in the upper fore-reef environment off Ishigaki Island, Ryukyu Islands. Coral Reefs 7(4): 185-195. DOI: 10.1007/BF00301597

Maughan, B. C. 2001. The effects of sedimentation and light on recruitment and development of a temperate, subtidal, epifaunal community. Journal of Experimental Marine Biology and Ecology 256(1): 59-71. DOI: 10.1016/S0022-0981(00)00304-X

Miller, D. C., C. L. Muir & O. A. Hauser. 2022. Detrimental effects of sedimentation on marine benthos: what can be learned from natural processes and rates? Ecological Engineering 19: 211-232. DOI: 10.1016/S0925-8574(02)00081-2

Morgan, K. M. & P. S. Kench. 2017. New rates of Indian Ocean carbonate production by encrusting coral reef calcifiers: Periodic expansions following disturbance influence

reef-building and recovery. Marine Geology 390(February): 72-79. DOI: 10.1016/j. margeo.2017.06.001

Nava, H., J. F. Alvarado-Rodríguez, M. Á. Cárdenas-Alvarado, I. Magaña-Sánchez & J. C. Cristóbal-Aguilar. 2022. Effect of the El Niño 2015–16 on the assemblages of reef building sclerobionts in a coral reef from the eastern Pacific coast. Marine Biology 169(8): 106. DOI: 10.1007/s00227-022-04083-2

Nava, H. & M. T. Ramírez-Herrera. 2012. Land use changes and impact on coral communities along the central Pacific coast of Mexico. Environmental Earth Sciences 65(4): 1095-1104. DOI: 10.1007/ s12665-011-1359-3

Nava, H., M. T. Ramírez-Herrera, A. G. Figueroa-Camacho & B. M. Villegas-Sanchez. 2014. Habitat characteristics and environmental factors related to boring sponge assemblages on coral reefs near populated coastal areas on the Mexican Eastern Pacific coast. Marine Biodiversity 44: 45-54. DOI: 10.1007/s12526-013-0182-3

Nava, H., N. López, P. Ramírez-García & E. Garibay-Valladolid. 2021. Contrasting effects of the El Niño 2015 – 16 event on coral reefs from the central pacific coast of Mexico. Marine Ecology 42(2): 1-11. DOI: 10.1111/maec.12630

Norzagaray-López, C. O., L. E. Calderon-Aguilera, J. M. Hernández-Ayón, H. Reyes-Bonilla,

J. P. Carricart-Ganivet, R. A. Cabral-Tena & E. F. Balart. 2015. Low calcification rates and calcium carbonate production in Porites panamensis at its northernmost geographic distribution. Marine Ecology 36(4): 1244-1255. DOI: 10.1111/maec.12227

Orrante-Alcaraz, J. M., J. L. Carballo & B. Yáñez. 2023. Seasonal net calcification by secondary calcifiers in coral reefs of the Eastern Tropical Pacific Ocean. Marine Biology 170(2): 16. DOI: 10.1007/ s00227-022-04158-0

Perry, C. T., E. N. Edinger, P. S. Kench, G. N. Murphy, S. G. Smithers, R. S. Steneck & P. J. Mumby. 2012. Estimating rates of biologically driven coral reef framework production and erosion: a new census-based carbonate budget methodology and applications to the reefs of Bonaire. Coral Reefs 31(3): 853-868. DOI: 10.1007/s00338-012-0901-4

Perry, C. T. & L. J. Hepburn. 2008. Syn-depositional alteration of coral reef framework through bioerosion, encrustation and cementation: Taphonomic signatures of reef accretion and reef depositional events. Earth-Science Reviews 86(1-4): 106-144. DOI: 10.1016/j. earscirev.2007.08.006

Perry, C. T., P. S. Kench, S. G. Smithers, B. Riegl, H. Yamano & M. J. O’Leary. 2011. Implications of reef ecosystem change for the stability and maintenance of coral reef islands. Global Change Biology 17(12): 3679-3696. DOI: 10.1111/j.1365-2486.2011.02523.x

Poik-ne, S., M. H. Alves, C. Argillier, M. van den Berg, F. Buzzi, E. Hoehn, C. de Hoyos, I. Karottki, C. Laplace-Treyture, A. L. Solheim, J. Ortiz-Casas, I. Ott, G. Phillips, A. Pilke, J. Pádua, S. Remec-Rekar, U. Riedmüller, J. Schaumburg, M. L. Serrano, H. Soszka, D. Tierney, G. Urbanič & G. Wolfram. 2010. Defining Chlorophyll-a Reference Conditions in European Lakes. Environmental Management 45(6): 1286-1298. DOI:

1007/s00267-010-9484-4

Price, N. N., T. R. Martz, R. E. Brainard & J. E. Smith. 2012. Diel variability in seawater pH relates to calcification and benthic community structure on coral reefs. PLoS ONE 7(8): e43843. DOI: 10.1371/journal. pone.0043843

R. Core Team. 2022. R: A language and environment for statistical computing. 4.2.0. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/

Randi, C. B., A. C. Becker, M. J. Willems, C. T. Perry, L. T. Salgado, R. T. de Carvalho, F. S. Motta, R. L. de Moura, F. C. de Moraes & G. H. Pereira-Filho. 2021. Calcium carbonate production in the southernmost subtropical coral reef of Atlantic. Marine Environmental 172(October): 1-8. DOI: 10.1016/j.marenvres.2021.105490

Rasser, M. & B. Riegl. 2002. Holocene coral reef rubble and its binding agents. Coral Reefs 21: 57-72. DOI: 10.1007/s00338-001-0206-5

Reyes-Bonilla, H., S. González-romero, G. Cruz-Piñon & L. E. Calderón-Aguilera. 2008. Corales pétreos. In G. D. Danemann & E. Ezcurra (eds.). Bahia de los Ángeles: recursos naturales y comunidad. Línea base 2007. (1a edición). Secretaría de Medio Ambiente y Recursos Naturales. pp. 291-318.

Richter, C. & M. Wunsch. 1999. Cavity-dwelling suspension feeders in coral reefs - A new link in reef trophodynamics. Marine Ecology Progress Series 188: 105-116. DOI: 10.3354/meps188105

Rogers, C. S. 1990. Responses of coral reefs and reef organisms to sedimentation. Marine Ecology Progress Series 62: 185-202. DOI: 10.3354/meps062185

Sanford, E. & B. A. Menge. 2001. Spatial and temporal variation in barnacle growth in a coastal upwelling system. Marine Ecology Progress Series 209: 143-157. DOI: 10.3354/meps209143

Scoffin, T. P. 1992. Taphonomy of coral reefs: a review. Coral Reefs 11: 57-77. DOI: 10.1016/B978-0-12-811963-1.00001-9

Simpson, J. H., A. J. Souza & M. F. Lavin. 1994. Tidal mixing in the Gulf of California. In K.

C. Beven, P. C. Chatwin & J. Millbank (eds.), Mixing and Transport in the Environment. John Wiley and Sons, London.

Soto-Mardones, L., S. Marioni & A. Pares-Sierra. 1999. Variabilidad espaciotemporal de la temperatura superficial del mar en el Golfo de California. Ciencias Marinas 25(1): 1-30.

Stearn, W., T. P. Scoffin & W. Martindale. 1977. Calcium carbonate budget of a fringing reef on the West coast of Barbados. Bulletin of Marine Science 27(3): 479-510.

Tejada-Begazo, C. L., L. E. Calderon-Aguilera, A. López-Pérez & R. A. Cabral-Tena. 2022. High latitude coral larval recruitment: spatiotemporal process variability in the Gulf of California. Pacific Science 76(2): 229–246. DOI: 10.2984/76.2.10

Vargas-Ángel, B., C. L. Richards, P. S. Vroom, N. N. Price, T. Schils, C. W. Young, J. Smith,

M. D. Johnson & R. E. Brainard. 2015. Baseline assessment of net calcium carbonate accretion rates on U.S. pacific reefs. PLoS ONE 10(12): 1-25. DOI: 10.1371/journal.pone.0142196

Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.

Published

2023-04-12

How to Cite

Alvarado Rodríguez, J. F., Nava, H., Cabral-Tena, R. A., Norzagaray-López, C. O., & Calderon-Aguilera, L. E. (2023). Contribution of heterotrophs to secondary calcification in marginal reefs of the Mexican Pacific. HIDROBIOLÓGICA, 33(2). Retrieved from https://hidrobiologica.izt.uam.mx/index.php/revHidro/article/view/1711

Issue

Section

Artículos

Most read articles by the same author(s)