Evaluation of the Carbon to Nitrogen and Carbon to Phosphorus ratios for improving the production of biomass and fatty acids in Chlorella sorokiniana
DOI:
https://doi.org/10.24275/uam/izt/dcbs/hidro/2022v32n1/LugoKeywords:
biomass, carbon, lipids, nitrogen, phosphorusAbstract
Background. Microalgae are being studied as a source of fatty acids to produce food with high added value. The content of oils can increase or decrease due to changes in abiotic factors such as nitrogen and phosphorus concentration in the culture medium. Goals. To determine the carbon/nitrogen and carbon/phosphorus ratio that favor biomass and fatty acid production in the native microalgae Chlorella sorokiniana. Methods. Microalgae isolated from the Parque Norte Lake in the city of Medellin, Antioquia, Colombia, was cultured in a heterotrophic way using glucose as carbon source at different carbon to nitrogen (C/N) (10/1, 25/1 y 50/1) and carbon to phosphorus (C/P) (200/1, 300/1 y 400/1) ratios. Results. The highest concentration of biomass was 9.70 gL-1 and 9.17 gL-1 at C/N 10/1 and C/P 200/1. The yields were 1.08 gL-1d-1 and 1.02 gL-1d-1. The biomass yield from glucose (were 0.43gg-1 and 0.44gg-1. Total fatty acids are favored by the C/N and C/P ratios of 50/1 and 400/1, yielding 24.27% and 20.48% total fatty acids measured over dried cell weight alongside higher fatty acid yield from biomass of 26.97m gL-1d-1 and 22.76m gL-1d-1, respectively. Conclusions. Lower C/N and C/P ratios favor the production of biomass while lowering the production of total fatty acids; conversely, higher C/N and C/P rations favor the production of total fatty acids and the lipid yield from biomass. Therefore, it is necessary to reach the highest production of biomass with low C/N ratio for enabling the elongation of the polyunsaturated fatty acid chain during the nutrient depletion stage in the culture medium as a response to the stress conditions
Downloads
References
Arora, N., A. Patel, P.A. Pruthi & V. Pruthi. 2016. Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima for biodiesel production. Bioresource Technology 213:79-87. DOI:10.1016/j.biortech.2016.02.112
Arredondo, B. & D. Voltolina. 2007. Determinación de peso seco y contenido orgánico e inorgánico. Arredondo, B. & D. Voltolina (eds.). Métodos y Herramientas Analíticas En La Evaluación de La Biomasa Microalgal. CIBNOR S.C., La paz, B.C.S., pp.23-26.
Baird, R. & L. Bridgewater. 2017. Standard methods for the examination of water and wastewater. 23rd ed. American Public Health Association (APHA). Washington, D.C. 164 p. DOI:10.2105/SMWW.2882.008
Belotti, G., M. Bravi, B. Caprariis, P. Filippis & M. Scarsella. 2013. Effect of Nitrogen and Phosphorus Starvations on Chlorella vulgaris Lipids Productivity and Quality under Different Trophic Regimens for Biodiesel Production. American Journal of Plant Sciences 04(12):44- 51. DOI:10.4236/ajps.2013.412a2006
Beuckels, A., E. Smolders & K. Muylaert. 2015. Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Research 77:98-106. DOI:10.1016/j.watres.2015.03.018
Bligh, E.G. & W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37(8):911-917.
Canelli, G., L. Neutsch, R. Carpine, S. Tevere, F. Giuffrida, Z. Rohfritsch, F. Dionisi, C.J. Bolten & A. Mathys. 2020. Chlorella vulgaris in a heterotrophic bioprocess: Study of the lipid bioaccessibility and oxidative stability. Algal Research 45:1-9. DOI:10.1016/j.algal.2019.101754
Fu, L., X. Cui, Y. Li, L. Xu, C. Zhang, R. Xiong, D. Zhou & J.C. Crittenden. 2017. Excessive phosphorus enhances Chlorella regularis lipid production under nitrogen starvation stress during glucose heterotrophic cultivation. Chemical Engineering Journal 330:566-572. DOI:10.1016/j. cej.2017.07.182
Guedes, A.C., H.M. Amaro, C.R. Barbosa, R.D. Pereira & F.X. Malcata. 2011. Fatty acid composition of several wild microalgae and cyanobacteria, with a focus on eicosapentaenoic, docosahexaenoic and α-linolenic acids for eventual dietary uses. Food Research International 44(9):2721-2729. DOI:10.1016/j.foodres.2011.05.020
Li, Q., L. Fu, Y. Wang, D. Zhou & B.E. Rittmann. 2018. Excessive phosphorus caused inhibition and cell damage during heterotrophic growth of Chlorella regularis. Bioresource Technology 268(July):266-270. DOI:10.1016/j.biortech.2018.07.148
Paliwal, C., M. Mitra, K. Bhayani, S.V.V. Bharadwaj, T. Ghosh, S. Dubey & S. Mishra. 2017. Abiotic stresses as tools for metabolites in microalgae. Bioresource Technology 244:1216-1226. DOI:10.1016/j.biortech.2017.05.058
Palomino, F., M. Rojas & M. Beltrán. 1997. Nueva técnica colorimétrica para la determinación de nitratos en el plasma. Revista de La Facultad de Medicina, Universidad Nacional de Colombia 45(2):63-69.
Quevedo, C. 2011. Estudio de las condiciones de cultivo de la microalga Chlorella sp para la producción de hidrocarburos y su caracterización con aplicaciones en combustibles. Tesis de maestría en ingeniería, Facultad de ingeniería, Universidad de Antioquia. 176 p.
Rodolfi, L., G. C. Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini & M. R. Tredici. 2009. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering 102(1):100-112. DOI: 10.1002/bit.22033
Safi, C., B. Zebib, O. Merah, P.Y. Pontalier & C. Vaca-Garcia. 2014. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews 35:265-278. DOI:10.1016/j.rser.2014.04.007
Sakarika, M. & M. Kornaros. 2017. Kinetics of growth and lipids accumulation in Chlorella vulgaris during batch heterotrophic cultivation: Effect of different nutrient limitation strategies. Bioresource Technology 243:356-365. DOI:10.1016/j.biortech.2017.06.110
Shen, X.F., J.J. Liu, F.F. Chu, P.K.S. Lam & R. J. Zeng. 2015. Enhancement of FAME productivity of Scenedesmus obliquus by combining nitrogen deficiency with sufficient phosphorus supply in heterotrophic cultivation. Applied Energy 158:348-354. DOI:10.1016/j.apenergy.2015.08.057
Singhasuwan, S., W. Choorit, S. Sirisansaneeyakul, N. Kokkaew & Y. Chisti. 2015. Carbon-to-nitrogen ratio affects the biomass composition and the fatty acid profile of heterotrophically grown Chlorella sp. TISTR 8990 for biodiesel production. Journal of Biotechnology 216:16-177. DOI:10.1016/j.jbiotec.2015.10.003
Tonon, T., D. Harvey, T.R. Larson & I.A. Graham. 2002. Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61(1):15-24. DOI:10.1016/ S0031-9422(02)00201-7
Wang, T., X. Tian, T. Liu, Z. Wang, W. Guan, M. Guo, J. Chu & Y. Zhuang. 2017. A two-stage fed-batch heterotrophic culture of Chlorella protothecoides that combined nitrogen depletion with hyperosmotic stress strategy enhanced lipid yield and productivity. Process Biochemistry 60(April):74-83. DOI:10.1016/j.procbio.2017.05.027
Wei, A., X. Zhang, D. Wei, G. Chen, Q. Wu, S.T. Yang. 2009. Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides. Journal of Industrial Microbiology and Biotechnology 36(11):1383-1389. DOI:10.1007/s10295-009-0624-x
Xin, L., H. Hong-ying, G. Ke & S. Ying-xue. 2010. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology 101(14):5494-5500. DOI:10.1016/j.biortech.2010.02.016
Zhang, J., T.B.T. Tran, B. Taidi, P. Lu & P. Perré. 2020. Chlorella vulgaris heterotrophic colony development and interaction. Algal Research 49(April):1-12. DOI:10.1016/j.algal.2020.101907
Downloads
Published
How to Cite
Issue
Section
License
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, HIDROBIOLÓGICA reconoce y respeta el derecho moral de los autores, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Publicar en la revista HIDROBIOLÓGICA tiene un costo de recuperación de $500 pesos mexicanos por página en blanco y negro (aproximadamente 29 dólares americanos) y $1000 pesos por página a color (aproximadamente 58 dólares americanos).
Todos los textos publicados por HIDROBIOLÓGICA sin excepción se distribuyen amparados bajo la licencia Creative Commons 4.0Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en HIDROBIOLÓGICA (por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en HIDROBIOLÓGICA.
Para todo lo anterior, el o los autor(es) deben remitir el formato de Carta-Cesión de la Propiedad de los Derechos de la primera publicación debidamente requisitado y firmado por el autor(es). Este formato se puede enviar por correo electrónico en archivo pdf al correo: enlacerebvistahidrobiológica@gmail.com; rehb@xanum.uam.mx (Carta-Cesión de Propiedad de Derechos de Autor).
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.