El uso de hongos macroscópicos como inmunoestimulantes en peces teleósteos: estado del arte al 2018

  • Luis Eduardo Ruiz González Laboratorio de Calidad de Agua y Acuicultura Experimental, Departamento de Ciencias Biológicas, Centro Universitario de la Costa, Universidad de Guadalajara. Av. Universidad de Guadalajara núm. 203, delegación Ixtapa, Puerto Vallarta, Jalisco, 48280, México
  • Oscar Basilio Del Río Zaragoza Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California. Carretera Tijuana-Ensenada km 107, Ensenada, Baja California, 22860. México
  • Adrián Tintos Gómez Facultad de Ciencias Marinas, Universidad de Colima. Carretera Manzanillo-Barra de Navidad km 19.5, El Naranjo, Manzanillo, Colima, 28060. México
  • Mónica Hernández Rodríguez Centro de Investigación Científica y de Educación Superior de Ensenada. carretera Tijuana-Ensenada, No. 3918 Zona Playitas, Ensenada, Baja California, 22860. México
  • Laura Guzmán Dávalos Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Camino Ramón Padilla Sánchez No. 2100
  • Daniel Badillo Zapata Laboratorio de Calidad de Agua y Acuicultura Experimental, Departamento de Ciencias Biológicas, Centro Universitario de la Costa, Universidad de Guadalajara. Av. Universidad de Guadalajara núm. 203, delegación Ixtapa, Puerto Vallarta, Jalisco, 48280, México
  • Fernando Vega Villasante Laboratorio de Calidad de Agua y Acuicultura Experimental, Departamento de Ciencias Biológicas, Centro Universitario de la Costa, Universidad de Guadalajara. Av. Universidad de Guadalajara núm. 203, delegación Ixtapa, Puerto Vallarta, Jalisco, 48280, México
Palabras clave: hongos, inmunoestimulantes, macromicetes, peces, teleósteos

Resumen

Antecedentes. Actualmente se utilizan diferentes métodos para la prevención y control de enfermedades en la acuicultura. La profilaxis con inmunoestimulantes a partir de hongos macroscópicos proporciona protección ante enfermedades y aumenta la resistencia a parásitos. En este contexto, los hongos Basidiomycota podrían tener un alto potencial para su uso acuícola, ya que contienen diferentes compuestos, como proteínas fúngicas, polisacáridos, terpenoides, vitaminas y minerales, que podrían tener un efecto inmunoestimulante. Objetivos. Analizar la información existente relativa a las especies de hongos macroscópicos que han sido evaluadas como inmunoestimulantes en el cultivo de peces teleósteos y también la de aquéllos que no han sido probados en peces pero que han mostrado resultados positivos en la respuesta inmune en otros organismos. Métodos. Se reunió, expuso y comparó la literatura experimental, científica y teórica relacionada con el efecto inmunoestimulante de los hongos macroscópicos en el cultivo de teleósteos así como la relativa a hongos cuyo efecto estimulante ha sido positivo en otros organismos. Resultados. Actualmente se han comprobado las propiedades inmunoestimulantes de más de 50 especies de hongos macroscópicos. No obstante, en 17 investigaciones publicadas durante los últimos años sólo se ha evaluado el efecto sobre la respuesta inmune de nueve especies de peces ante ocho especies de hongos: Ganoderma, Inonotus, Lentinula, Pleurotus, Phellinus y Trametes. De dichas publicaciones, siete consisten en la evaluación de glucanos purificados, seis de extractos crudos o alcohólicos, dos de basidiomas pulverizados y uno de un subproducto de hongo fermentado. Conclusiones. Debido a la escasa información existente sobre el efecto inmunoestimulante de macromicetes en peces, es preciso llevar a cabo más investigaciones que aborden su potencial en otras especies, que se estudie su cultivo y su correcta determinación, y se realicen pruebas in vitro e in vivo, tanto del organismo modelo como de organismos blanco, para confirmar sus efectos sobre el sistema inmune.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Luis Eduardo Ruiz González, Laboratorio de Calidad de Agua y Acuicultura Experimental, Departamento de Ciencias Biológicas, Centro Universitario de la Costa, Universidad de Guadalajara. Av. Universidad de Guadalajara núm. 203, delegación Ixtapa, Puerto Vallarta, Jalisco, 48280, México
Estudiante del Doctorado en Ciencias en Bioesistemática, Ecología y Manejo de Recursos Naturales y Agrícolas (BEMARENA), Centro Universitario de la Costa, Universidad de Guadalajara, Laboratorio de Calidad de Agua y Acuicultura Experimental, Puerto Vallarta, Jalisco, México.
Oscar Basilio Del Río Zaragoza, Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California. Carretera Tijuana-Ensenada km 107, Ensenada, Baja California, 22860. México
Investigador Titular de la Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Ensenada, Baja California, México.
Adrián Tintos Gómez, Facultad de Ciencias Marinas, Universidad de Colima. Carretera Manzanillo-Barra de Navidad km 19.5, El Naranjo, Manzanillo, Colima, 28060. México

Profesor-Investigador Tit de la Facultad de Ciencias Marinas, Universidad de Colima miembro del Cuerpo Académico Biotecnología Acuática y Profesor-Investigador honorífico del Departamento de Estudios para el Desarrollo Sustentable de la Zonas Costeras del programa de licenciatura de Biología marina y del Programa de Doctorado en Ciencias en Bioesistemática, Ecología y Manejo de Recursos Naturales y Agrícolas (BEMARENA), Universidad de Guadalajara, México., Gómez Farías No. 82, San Patricio-Melaque, Municipio de Cihuatlán, Jal., México. C. P. 48980.

Mónica Hernández Rodríguez, Centro de Investigación Científica y de Educación Superior de Ensenada. carretera Tijuana-Ensenada, No. 3918 Zona Playitas, Ensenada, Baja California, 22860. México
Investigador Titular, Departamento de Acuicultura, División de Oceanología, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California,  México
Laura Guzmán Dávalos, Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Camino Ramón Padilla Sánchez No. 2100
Investigador Titular del Laboratorio de Micología,  Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, México
Daniel Badillo Zapata, Laboratorio de Calidad de Agua y Acuicultura Experimental, Departamento de Ciencias Biológicas, Centro Universitario de la Costa, Universidad de Guadalajara. Av. Universidad de Guadalajara núm. 203, delegación Ixtapa, Puerto Vallarta, Jalisco, 48280, México
Catedrático CONACyT del Laboratorio de Calidad de Agua y Acuicultura Experimental, Centro Universitario de la Costa,  Universidad de Guadalajara, Puerto Vallarta, Jalisco, México
Fernando Vega Villasante, Laboratorio de Calidad de Agua y Acuicultura Experimental, Departamento de Ciencias Biológicas, Centro Universitario de la Costa, Universidad de Guadalajara. Av. Universidad de Guadalajara núm. 203, delegación Ixtapa, Puerto Vallarta, Jalisco, 48280, México
Investigador Titular del Laboratorio de Calidad de Agua y Acuicultura Experimental, Centro Universitario de la Costa,  Universidad de Guadalajara, Puerto Vallarta, Jalisco, México

Citas

Abasali, H. & S. Mohamad. 2010. Immune response of common carp (Cyprinus carpio) fed with herbal immunostimulants diets. Agricultural Journal 5: 163-172. DOI:10.3923/javaa.2010.1839.1847

Anderson, D. P. 1992. Immunostimulants, adjuvants, and vaccine carriers in fish: applications to aquaculture. Annual Review of Fish Diseases 2: 281-307. DOI: 10.1016/0959-8030(92)90067-8

Baba, E., G. Uluköy & C. Öntaş. 2015. Effects of feed supplemented with Lentinula edodes mushroom extract on the immune response of rainbow trout, Oncorhynchus mykiss, and disease resistance against Lactococcus garvieae. Aquaculture 448: 476-482. DOI: 10.1016/j.aquaculture.2015.04.031

Bilen, S., S. Yilmaz & A. M. Bilen. 2013. Influence of Tetra (Conitus coggygria) extract against Vibrio anguillarum infection in koi carp, Cyprinus carpio with referenced to haematological and immunological changes. Turkish Journal of Fisheries and Aquatic Sciences 13: 517-522. DOI: 10.4194/1303-2712-v13_3_16

Bilen, S., S. Ünal & H. Güvensoy. 2016. Effects of oyster mushroom (Pleurotus ostreatus) and nettle (Urtica dioica) methanolic extracts on immune responses and resistance to Aeromonas hydrophila in raibonw trout (Oncorhynchus mykiss). Aquaculture 454 (1): 90-94. DOI: 10.1016/j.aquaculture.2015.12.010

Bricknell, I. & R. A. Dalmo. 2005. The use of immunostimulants in fish larval aquaculture. Fish & Shellfish Immunology 19: 457-472. DOI:10.1016/j.fsi.2005.03.008

Çag larlrmak, N., K. Ünal & S. Ötles. 2002. Nutritional value of edible wild mushrooms collected from the Black Sea region of Turkey. Micología Aplicada Internacional 14 (1): 1-5.

Carbonero, E. R., A. C. Ruthes, C. S. Freitas, P. Utrilla, J. Gálvez, E. V. da Silva, G. L. Sassaki, P. A. Gorin & M. Iacomini. 2012. Chemical and biological properties of a highly branched -glucan from edible mushroom Pleurotus sajor-caju. Carbohydrate Polymers 90 (2): 814-819. DOI: 10.1016/j.carbpol.2012.06.005

Catap , E. S., M. R. Jiménez, S. C. O. Liquido, M. A. K. B. Cabujat & M. M. Sadaya. 2013. Immunomodulatory effects of Ganoderma lucidum and virgin coconut oil in Nile tilapia artificially-infected with Aeromonas hydrophila. Fish & Shellfish Immunology 34 (6): 1644. DOI:10.1016/j.fsi.2013.03.030

Cha, Y. J., N. Alam, J. S. Lee, K. R. Lee, M. J. Shim, M. W. Lee, H. Y. Kim, P. G. Shin, J. C. Cheong, Y. B. Yoo & T. S. Lee. 2012. Anticancer and immunopotentiating activities of crude polysaccharides from Pleurotus nebrodensis on mouse sarcoma 180. Micobiology 40 (4): 236-243. DOI: 10.5941/MYCO.2012.40.4.236

Chang, C. S., S. L. Huang, S. Chen & S. N. Chen. 2013. Innate immune responses and efficacy of using mushroom beta-glucan mixture (MBG) on orange-spotted grouper, Epinephelus coioides, aquaculture. Fish & Shellfish Immunology 35 (1): 115-125. DOI: 10.1016/j.fsi.2013.04.004

Chen, Y. H., D. Han, X. M. Zhu, Y. X. Yang & S. Q. Xie. 2014. Effects of dietary inclusion of extracts from Ganoderma lucidum on growth performance, immune response and disease resistance in gibel carp (Carassius auratus gibelio). Acta Hydrobiologica Sinica 38 (4): 609- 618. DOI: 10.7541/2014.87

Del Rio-Zarag oza, O. B., E. J. Fajer-Ávila & P. Almazán-Rueda. 2011. Influence of -glucan on innate immunity and resistance of Lutjanus guttatus to an experimental infection of dactylogyrid monogeneans. Parasite Immunology 33: 483-494. DOI:10.1111/j.1365-3024.2011.01309.x

Dey, B., S. K. Bhunia, K. K. Maity, S. Patra, S. Mandal, S. Maiti, T. K. Maiti, S. R. Sikdar & S. S. Islam. 2010. Chemical analysis of an immunoenhancing water-soluble polysaccharide of an edible mushroom, Pleurotus florida blue variant. Carbohydrate Research 345 (18): 2736-2741. DOI:10.1016/j.carres.2010.09.032

Djordjevic, B., S. Škugor, S. M. Jorgensen, M. Overland, L. T. Mydland & A. Krasnov. 2009. Modulation of splenic immune responses to bacterial lipopolysaccharide in rainbow trout (Oncorhynchus mykiss) fed lentinan, a beta-glucan from mushroom Lentinula edodes. Fish & Shellfish Immunology 26: 201-209. DOI:10.1016/j.fsi.2008.10.012

Dobšíková, R., J. Blahová, I. Mikulíková, H. Modrá, E. Prášková, Z. Svobodová, M. Škorič, J. Jarkovský & A. K. Swicki. 2013. The effect of oyster mushroom -1.3/1.6-D-glucan and oxytetracycline antibiotic on biometrical, haematological, biochemical, and immunological indices, and histopathological changes in common carp (Cyprinus carpio L.). Fish & Shellfish Immunology 35: 1813-1823. DOI:10.1016/j.fsi.2013.09.006

El-Boshy, M. E., A. M. El-Ashram, F. M. Abdelhamid & H. A. Gadalla. 2010. Immunomodulatory effect of dietary Saccharomyces cerevisiae, -glucan and laminaran in mercuric chloride treated Nile tilapia (Oreochromis niloticus) and experimentally infected with Aeromonas hydrophila. Fish & Shellfish Immunology 28: 802-808. DOI:10.1016/j.fsi.2010.01.017

El-Enshasy, H. A. & R. Hatti-Kaul. 2013. Mushroom immunomodulators: unique molecules with unlimited applications. Trends in Biotechnology 31 (12): 668-677. DOI: 10.1016/j.tibtech.2013.09.003

Ghazanfari, T., R. Yaraee, Z. Farahnejad, B. Rahmati & H. Hakimzadeh. 2010. Macrophages activation and nitric oxide alterations in mice treated with Pleurotus florida. Immunopharmacology and Immunotoxicology 32: 47-50. DOI:10.1080/08923970903117357

Guimarães, I. G., C. Lim, M. Yildirim-Aksoy, M. H. Li & P. H. Klesius. 2014. Effects of dietary levels of vitamin A on growth, hematology, immune response and resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae. Animal Feed Science and Technology 188: 126-136. DOI:10.1016/j.anifeedsci.2013.12.003.

Harikrishnan, R., C. Balasundaram & M. S. Heo. 2011. Diet enriched with mushroom Phellinus linteus extract enhances the growth, innate immune response, and disease resistance of kelp grouper, Epinephelus bruneus against vibriosis. Fish & Shellfish Immunology 30 (1): 128-134. DOI:10.1016/j.fsi.2010.09.013

Harikrishnan, R., C. Balasundaram & M. S. Heo. 2012. Effect of Inonotus obliquus enriched diet on hematology, immune response, and disease protection in kelp grouper, Epinephelus bruneus against Vibrio harveyi. Aquaculture 344-349: 48-53. DOI:10.1016/j.aquaculture. 2012.03.010

Hu, T., Q. Huang, K. Wong & H. Yang. 2017. Structure, molecular conformation, and immunomodulatory activity of four polysaccharide fractions from Lignosus rhinocerotis sclerotia. International Journal of Biological Macromolecules 94: 423-430. DOI:10.1016/j.ijbiomac. 2016.10.051

Huerta, I., J. Molina, M. G. Garnica & J. Yahuaca. 2016. Total polyphenols and antioxidant activity of Ganoderma curtisii extracts. Journal of Medicinal Plants Studies 4 (4): 136-141.

Jeong, S. C., S. R. Koyyalamudi, Y. T. Jeon, C. H. Song & G. Pang. 2012. Macrophage immunomodulating and antitumor activities of polysaccharides isolated from Agaricus bisporus white button mushrooms. Journal of Medicinal Food 15: 58-65. DOI:10.1089/jmf.2011.1704

Jeong, Y. T., S. C. Jeong, Y. A. Gu, R. Islam & C. H. Song. 2010. Antitumor and immunomodulating activities of endo-biopolymers obtained from a submerged culture of Pleurotus eryngii. Food Science and Biotechnology 19 (2): 399-404. DOI:10.1007/s10068-010-0056-4

Jiao, Y., T. Xie, L. H. Zou, Q. Wei, L. Qiu & L. X. Chen. 2016. Lanostane triterpenoids from Ganoderma curtisii an their production inhibitory activities of LPS-induced microglia. Bioorganic & Medicinal Chemistry Letters: en prensa. DOI:10.1016/j.bmcl.2016.06.023

Kamilya, D., D. Ghosh, S. Bandyopadhyay, B. C. Mal & T. K. Maiti. 2006a. In vitro effects of bovine lactoferrin, mushroom glucan and Abrus agglutinin on Indian major carp, catla (Catla catla) head kidney leukocytes. Aquaculture 253: 130-139. DOI:10.1016/j.aquaculture. 2005.07.038

Kamilya, D., T. K. Maiti, S. N. Joardar & B. C. Mal. 2006b. Adjuvant effect of mushroom glucan and bovine lactoferrin upon Aeromonas hydrophila vaccination in catla, Catla catla (Hamilton). Journal of Fish Diseases 29: 331-337. DOI:10.1111/j.1365-2761.2006.00722.x

Kamilya, D., S. N. Joardar, B. C. Mal & T. K. Maiti. 2008. Effects of a glucan from the edible mushroom (Pleurotus florida) as an immunostimulant in farmed Indian major carp (Catla catla). The Israeli Journal of Aquaculture - Bamidgeh 60: 37-45.

Katya, K., Y. Yun, G. Park, J. Y. Lee, G. Yoo & S. C. Bai. 2014. Evaluation of the efficacy of fermented by-product of mushroom, Pleurotus ostreatus, as a fish meal replacer in juveline amur catfish, Silurus asotus: effects on growth, serological characteristics and immune responses. Asian-Australasian Journal of Animal Sciences 27 (10): 1478-1486. DOI:10.5713/ajas.2014.14038

Kim, J. Y., S. E. Byeon, Y. G. Lee, J. Y. Lee, J. Park, E. K. Hong & J. Y. Cho. 2008. Immunostimulatory activities of polysaccharides from liquid culture of pine-mushroom Tricholoma matsutake. Journal of Microbiology and Biotechnology 18: 95-103.

Kozarski, M., A. Klaus, M. Niksic, D. Jakovljevic, J. P. F. G. Helsper & L. J. K. D. Van Griensven. 2011. Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Food Chemistry 129: 1667-1675. DOI:10.1016/j.foodchem.2011.06.029

Krishnamoorthy, M. & V. Ramasubramanian. 2014. Dietary supplementation with chitosan on haematology and innate immune response in Cyprinus carpio haematopterus against Aeromonas hidrophila. Indian Journal of Applied Research 4: 67- 69.

Kumar, V., S. Roy & D. Barman. 2015. Effect of Mikania cordata (Burm) B. L. Robins on non-specific immune response of Catla catla (Hamilton, 1822) against Aphanomyces invadans. Fishery Technology 52 (1): 20-25.

Lin, S., S. Mao, Y. Guan, L. Lou, L. Lou & Y. Pan. 2012. Effects of dietary chitosan oligosaccharides and Bacillus coagulans on the growth innate immunity and resistance of koi (Cyprinus carpio koi). Aquaculture 342-343: 36-41. DOI:10.1016/j.aquaculture.2012.02.009

Lin, S., Y. Pan, L. Luo & L. Luo. 2011. Effects of dietary b-1, 3-glucan, chitosan or raffinose on the growth, innate immunity and resistance of koi (Cyprinus carpio koi). Fish Shellfish Immunology 31 (6): 788-794. DOI:10.1016/j.fsi.2011.07.013

Lin, Y., Y. Zhou, X. Wang, P. Wang, Y. Xiao, X. Cheng, Y. Zhang, Y. Liu & Q. Liu. 2016. Fruit extract from Pyropolyporus fomentarius (L. ex Fr.) Teng induces mitochondria-dependent apoptosis in leukemia cells but enhances immunomodulatory activities of splenic lymphocytes. Nutrition and Cancer 68 (4): 708-717. DOI:10.1080/01635581.2016.1158290

Maiti, S., S. K. Bhutia, S. K. Mallick, A. Kumar, N. Khadgi & T. K. Maiti. 2008. Antiproliferative and immunostimulatory protein fraction from edible mushrooms. Environmental Toxicology and Pharmacology 26: 187-191. DOI:10.1016/j.etap.2008.03.009

Mallick, S. K., S. Maiti, S. K. Bhutia & T. K. Maiti. 2010. Immunostimulatory properties of a polysaccharide isolated from Astraeus hygrometricus. Journal of Medicinal Food 13 (3): 665-672. DOI:10.1089/jmf.2009.1300

Mandal, E. K., K. Maity, S. Maity, S. K. Gantait, S. Maiti, T. K. Maiti, S. R. Sikdar & S. S Islam. 2011. Structural characterization of an immunoenhancing cytotoxic heteroglycan isolated from an edible mushroom Calocybe indica var. APK2. Carbohydrate Research 346 (14): 2237-2243. DOI:10.1016/j.carres.2011.07.009

Raa, J. 2000. The use of immune-stimulants in fish and shellfish feeds. In: Cruz-Suárez, L. E., D. Ricque-Marie, M. Tapia-Salazar, M. A. Olvera-Novoa, R. Civera-Cerecedo (Eds.). Avances en Nutrición Acuícola V. Memorias del V Simposium Internacional de Nutrición Acuícola. Mérida, Yucatán, México, pp. 47-56.

Reverter, M., N. Bontemps, D. Lecchini, B. Banaigs & P. Sasal. 2014. Use of plant extracts in fish aquaculture as an alternative to chemotherapy: current status and future perspectives. Aquaculture 433: 50-61. DOI:10.1016/j.aquaculture.2014.05.048

Roberts, R. 1983. Fish pathology. Fourth edition. London: Balliere-Tindall, 581 p.

Rondón-Barrag án, I. 2004. Inmunoestimulantes en medicina veterinaria. Orinoquia 8: 56-75.

Sadler, M. 2003. Nutritional properties of edible fungi. British Nutrition Foundation Nutrition Bulletin 28: 305-308. DOI:10.1046/j.1467-3010.2003.00354.x

Sakai, M. 1999. Current research status of fish immunostimulants. Aquaculture 162: 63-92. DOI:10.1016/S0044-8486(98)00436-0

Suabjakyong, P., K. Nishimura, T. Toida & L. J. L. D. Van Griensven. 2015. Structural characterization and immunomodulatory effects of polysaccharides from Phellinus linteus and Phellinus ignarius on the IL-6/IL-10 cytokine balance of the mouse macrophage cell lines (RAW 264.7). Food & Function 6: 2834-2844. DOI:10.1039/c5fo00491h

Tewary, A. & B. C. Patra. 2008. Use of vitamin C as an immunostimulant. Effect on growth, nutritional quality, and immune response of Labeo rohita (Ham.). Fish Physiology and Biochemistry 34 (3): 251-259.DOI:10.1007/s10695-007-9184-z

Uluköy, G., E. Baba & C. Öntaş. 2016. Effect of oyster mushroom, Pleurotus ostreatus, extract on hemato-immunological parameters of rainbow trout, Oncorhynchus mykiss. Journal of the World Aquaculture Society 47 (5): 676- 684. DOI:10.1111/jwas.12318

Van Doan, H., S. Doolgindachbap orn & A. Suksri. 2016. Effects of Eryngii mushroom (Pleurotus eryngii) and Lactobacillus plantarum on growth performance, inmmunity and disease resistance of Pangasius catfish (Pangasius bocourti, Sauvage 1880). Fish Physiology and Biochemistry 42 (5): 1427-1440. DOI:10.1007/s10695-016-0230-6

Vázquez-Piñeros, M. A., I. S. Rondón-Barraga n & P. R. Eslava-Mocha. 2012. Inmunoestimulantes en teleósteos: probióticos, -glucanos y LPS. Orinoquia 16 (1): 46-62.

Wang, C. R., W. T. Qiao, Y. N. Zhang & F. Liu. 2013. Effects of adenosine extract from Pholiota adipose (Fr.) Quel on mRNA expressions of superoxide dismutase and immunomodulatory cytokines. Molecules 18 (2): 1775-1782. DOI:10.3390/molecules18021775

Wang, D., S. Q. Sun, W. Z. Wu, S. L. Yang & J. M. Tan. 2014. Characterization of a water-soluble polysaccharide from Boletus edulis and its antitumor and immunomodulatory activities on renal cancer in mice. Carbohydrate Polymers 105: 127-134. DOI:10.1016/j.carbpol.2013.12.085

Wang, M., Y. X. Meng, R. L. Yang, T. Qin, X. Y. Wang, K. Y. Zhang, C. Z. Fei, Y. Li, Y. L. Hu & F. Q. Xue. (2012) Cordyceps militaris polysaccharides can enhance the immunity and antioxidation activity in immunosuppressed mice. Carbohydrate Polymers 89: 461-466. DOI:10.1016/j.carbpol.2012.03.029

Watanuki, H., K. Ota, A. C. M. Tassaka, T. Kato & M. Sakai. 2006. Immunostimulant effects of dietary Spirulina plantensis on carp, Cyprinus carpio. Aquaculture 258: 157-163. DOI:10.1016/j.aquaculture.2006.05.003

Wasser, S. P. 2002. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology 60: 258-274. DOI:10.1007/s00253-002-1076-7

Wasser, S. P. 2011. Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Applied Microbiology and Biotechnology 89: 1323-1332. DOI:10.1007/s00253-010-3067-4

Yin, G., L. Ardó, Z. Jeney, P. Xu & G. Jeney. 2008. Chinese herbs (Lonicera japonica y Ganoderma lucidum) enhance non-specific immune response of tilapia, Oreochromis niloticus, and protection against Aeromonas hydrophila. In: Bondad-Reantaso, M. G., C. V. Mohan, M. Crumlish & R. P. Subasinghe (Eds.). Diseases in Asian Aquaculture VI. Fish Health Section, Asian Fisheries Society, Manila, Philippines, pp. 269-282.

Yin, G., L. Ardó, K. D. Thompson, A. Adams, Z. Jeney & G. Jeney. 2009. Chinese herbs (Astragalus radix and Ganoderma lucidum) enhance immune response of carp, Cyprinus carpio, and protection against Aeromonas hydrophila. Fish & Shellfish Immunology 26 (1): 140-145. DOI:10.1016/j.fsi.2008.08.015

Zheng, Y., W. Wang & Y. Li. 2015. Antitumor and immunomodulatory activity of polysaccharide isolated from Trametes orientalis. Carbohydrate Polymers 131: 248-254. DOI:10.1016/j.carbpol.2015.05.074

Publicado
31-08-2018
Cómo citar
Ruiz González, L. E., Del Río Zaragoza, O. B., Gómez, A. T., Hernández Rodríguez, M., Guzmán Dávalos, L., Badillo Zapata, D., & Vega Villasante, F. (2018). El uso de hongos macroscópicos como inmunoestimulantes en peces teleósteos: estado del arte al 2018. HIDROBIOLÓGICA, 28(2). https://doi.org/10.24275/uam/izt/dcbs/hidro/2018v28n2/Tintos
Sección
Artículos