Diatom diversity and species composition in phytoplankton, sediment traps, and surface sediments from a warm monomictic tropical lake
Contribución al número especial por el 175 aniversario de la ficología mexicana, sección II ficología dulceacuícola.
Palavras-chave:
diatom community, diatom species richness, climatic change, eutrophic lake, MexicoResumo
Background: Diatom assemblages in sediments are frequently used as water quality and paleoenvironmental indicators. However, sedimentary diatom assemblages may present taphonomic biases due to processes occurring in the water column and water-sediment interface. Objective: The present study aimed to determine if in tropical deep lakes, the differences between water column, sediment trap and surface sediment samplings were large enough to provide antagonistic interpretations. It also aimed to determine if diversity metrics would be statistically different between the three kinds of samples. Methods: This study was performed in Lake Alberca de Tacámbaro, Michoacan, Mexico, and involved the comparison of diatom species composition and diversity between phytoplankton, sediment trap and surface sediment samplings. Results: Nearly 80% of the diatom species, including the five most abundant taxa, were present in the three kinds of samples. Phytoplankton and sediment trap samplings documented the seasonal dynamics and indicated that the changes in species composition and diversity metrics were associated with the mixing and stratification processes of the water column. Unexpectedly, phytoplankton and sediment trap samples had relatively high percentages (ca. 20%) of benthic taxa (Achnanthidium minutissimum and Brachysira vitrea), which behaved as tychoplanktonic. Surface sediment samples showed a higher species richness and Simpson’s diversity, but the three kinds of samples had similar Shannon diversities. Conclusions: In spite of the differences between the sampling methods, they did not provide antagonistic results on the condition of the lake. Surface sediment samples showed richer and more equitable assemblages, including diatoms from different habits, with an average-time window of about two years. The discrepancies between the phytoplankton and surface sediment diatom assemblages are an indication of recent changes in the diatom flora of this lake.
Downloads
Referências
Alcocer, J. & A. Lugo. 2003. Effects of El Niño on the dynamics of Lake Alchichica, central Mexico. Geofísica Internacional 42: 523-528.
Baselga, A. 2012. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography 21: 1223-1232. DOI: 10.1111/j.1466- 8238.2011.00756.x
Baselga, A. & C. D. L. Orme. 2012. Betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution 3: 808-812. DOI: 10.1111/j.2041-210X.2012.00224.x
Battarbee, R. W., V. J. Jones, R. J. Flower, N. G. Cameron, H. Bennion, L. Carvalho & S. Juggins. 2001. Diatoms. In: Smol J. P., H. J. B. Birks & W. M. Last (Eds.). Tracking environmental change using lake sediments, Vol. 3. Kluwer Academic Publishers, New York, pp. 155-202. DOI: 10.1007/0-306-47668-1_8
Battarbee, R. W., A. W. Mackay, G. H. Jewson, D. B. Ryves & M. Sturm. 2005. Differential dissolution of Lake Baikal diatoms: correction factors and implications for palaeoclimatic reconstruction. Global and Planetary Change 46: 75-86. DOI: 10.1016/j.gloplacha.2004.11.007
Battarbee, R. W., G. L. Simpson, E. M. Shilland, R. J. Flower, A. Kreiser, H. Yang & G. Clarke. 2014. Recovery of UK lakes from acidification: as assessment using combined palaeoecological and contemporary diatom assemblage data. Ecological Indicators 37: 365-380. DOI: 10.1016/j.ecolind.2012.10.024
Behrensmeyer, A. K. & Kidwell, S. M. 1985. Taphonomy’s contributions to paleobiology. Paleobiology 11: 105-119.
Borcard, D., F. Gillet & P. Legendre. 2018. Numerical Ecology with R. Springer International Publishing, Cham. DOI: 10.1007/978-3-319- 71404-2
Bradbury, J. K. & W. N. Krebs. 1995 Fossil continental diatoms: paleolimnology, evolution, and biochronology. In: Babcock, L. E. & W. I. Ausich (Eds.). Siliceous microfossils. Short Courses in Paleontology. The Paleontological Society, Knoxville, pp 119-138. DOI: 10.1017/ S2475263000001458
Buchaca, T. & J. Catalan. 2007. Factors influencing the variability of pigments in the surface sediments of mountain lakes. Freshwater Biology 52: 1365-1379. DOI: 10.1111/j.1365-2427.2007.01774.x
Caballero, M., G. Vázquez, S. Lozano-García, A. Rodríguez, S. Sosa-Nájera, A. Ruíz-Fernández & B. Ortega. 2006. Present limnological conditions and recent (ca. 340 yr) palaeolimnology of a tropical lake in the Sierra de los Tuxtlas, eastern Mexico. Journal of Paleolimnology 35: 83-97. DOI: 0.1007/s10933-005-7427-5
Caballero, M., G. Vázquez, B. Ortega, M. E. Favila & S. Lozano-García. 2016. Responses to a warming trend and “El Niño” events in a tropical lake in western Mexico. Aquatic Sciences 78: 591-604. DOI: 10.1007/s00027-015-0444-1
Caballero, M. & G. Vázquez. 2019. Lagos como sensores de cambio climático: el caso de La Alberca de Tacámbaro, Michoacán, México. TIP Revista Especializada en Ciencias Químico-Biológicas 22: 1-8. DOI: 10.22201/fesz.23958723e.2019.0.193
Caballero, M. & G. Vázquez. 2020. Mixing patterns and deep chlorophyll a maxima in an eutrophic tropical lake in western Mexico. Hydrobiologia 847: 4161-4176. DOI: 10.1007/s10750-020-04367-y
Cantonati, M. & R. L. Lowe. 2014. Lake benthic algae: toward an understanding of their ecology. Freshwater Science 33: 475-486. DOI: 10.1086/676140
Chao, A., N. J. Gotelli, T. C. Hsieh, E. L. Sander, K. H. Ma, R. K. Colwell & A. M. Ellison. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84: 45-67. DOI: 10.1890/13-0133.1
Chorus, I. & M. Welker. 2021. Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management, 2nd Edition. CRC Press, London. DOI: 10.1201/9781003081449
Cohen, A. S. 2003. Paleolimnology: the history and evolution of lake systems. Oxford University Press, Oxford. DOI: 10.1093/ oso/9780195133530.001.0001
Cvetkoska, A., A. Pavlov, E. Jovanovska, S. Tofilovska, S. Blanco, L. Ector, F. Wagner-Cremer & Z. Levkov. 2018. Spatial patterns of diatom diversity and community structure in ancient Lake Ohrid. Hydrobiologia 819: 197-215. DOI: 10.1007/s10750-018-3637-5
Dong, X., H. Bnnion, R. Battarbee, X. Yang, H. Yang & E. Liu. 2008. Tracking eutrophication in Taihu Lake using the diatom record: potential and problems. Journal of Paleolimnology 40: 413-429. DOI: 10.1007/ s10933-007-9170-6
Dubelaar, G. B. J., P. J. F. Geerders & R. R. Jonker. 2004. High frequency monitoring reveals phytoplankton dynamics. Journal of Environmental Monitoring 6: 946-952. DOI: 10.1039/B409350J
Gregory-Eaves I. & B. E. Beisner. 2011. Palaeolimnological insights for biodiversity science: an emerging field. Freshwater Biology 56: 2653- 2661. hDOI: 10.1111/j.1365-2427.2011.02677.x
Guiry, M. D. & G. M. Guiry. 2022. Algaebase. World-wide electronic publication, National University of Ireland, Galway. Available online at: https://www.algaebase.org
Halland, R. I. & P. Smol. 2010. Diatoms as indicators of lake eutrophication. In: Smol, P. & E. F. Stoermer (Eds.). The diatoms: applications for the environmental sciences. Cambridge University Press, Cambridge, pp. 122-151. DOI: 10.1017/CBO9780511763175.008
Hassan, G. S. & Diaz, M. C. 2023. Experimental taphonomy of freshwater diatoms: discriminating between chemical and physical causes of frustule fragmentation. Palaios 38: 125-135.
Hill, M. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427-432. DOI: 10.2307/1934352
Hofmann, A. M., J. Geist, L. Nowotny & U. Raeder. 2020. Depth-distribution of lake benthic diatom assemblages in relation to light availability and substrate: implications for paleolimnological studies. Journal of Paleolimnology 64: 315-334. DOI: 10.1007/s10933-020-00139-9
Hsieh, T. C., K. H. Ma & A. Chao. 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7: 1451-1456. DOI: 10.1111/2041- 210X.12613
Jost, L. 2006. Entropy and diversity. Oikos 113: 363-375. DOI: 10.1111/j.2006.0030-1299.14714.x
Kato, M., Y. Tanimura, K. Matsuoka & H. Fukusawa. 2003. Planktonic diatoms from sediment traps in Omura Bay, western Japan with implications for ecological and taphonomic studies of coastal marine environments. Quaternary International 105: 25-31. DOI: 10.1016/ S1040-6182(02)00147-7
Kireta, A. R., E. D. Reavie, G. V. Sgro, T. R. Angradi, D. W. Bolgrien, B. H. Hill & T. M. Jicha. 2012. Planktonic and periphytic diatoms as indicators of stress on great rivers of the United States: testing water quality and disturbance models. Ecological Indicators 13: 222-231. DOI: 10.1016/j.ecolind.2011.06.006
Krammer, K. & H. Lange-Bertalot. 1997. Süßwasserflora von Mitteleuropa Bd. 02/2: Bacillariophyceae. Teil 2: Bacillariaceae, Epithemiaceae, Surirellaceae. Springer Spektrum, Berlin.
Krammer, K. & H. Lange-Bertalot. 1999. Süßwasserflora von Mitteleuropa, Bd. 02/1: Bacillariophyceae, 1. Teil: Naviculaceae. Springer Spektrum, Berlin.
Krammer, K. & H. Lange-Bertalot. 2000. Süßwasserflora von Mitteleuropa, Teil 3: Centrales, Fragilariaceae, Eunotiaceae. Springer Spektrum, Berlin.
Legendre, P. & L. Legendre. 1998. Numerical Ecology, 2nd Edition. Elsevier Science, Amsterdam. Liao, M., U. Herzschun, Y. Wang, X. Liu, J. Ni & K. Li. 2020. Lake diatom response to climate change and sedimentary events on the southeastern Tibetan Plateau during the last millennium. Quaternary Science Reviews 241: 106409. DOI: 10.1016/j.quascirev.2020.106409
Lund, J. W., C. Kipling & E. D. Le Cren. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143-170. DOI: 10.1007/ BF00007865
Montero, E., G. Vázquez, M. Caballero, M. E. Favila & F. Martínez-Jerónimo. 2021. Seasonal variation of Microcystis aeruginosa and factors related to blooms in a deep warm monomictic lake in Mexico. Journal of Limnology 80: 2013. DOI: 10.4081/jlimnol.2021.2013
Pla-Rabés, S. & J. Catalan. 2018. Diatom species variation between lake habitats: implications for interpretation of paleolimnological records. Journal of Paleolimnology 60: 169-187. DOI: 10.1007/ s10933-018-0017-0
Quillen, A. K., E. E. Gaiser & E. C. Grimm. 2013 Diatom-based paleolomnological reconstruction of regional climate and local land-use change from a protected sinkhole lake in southern Florida, USA. Journal of Paleolimnology 49: 15-30. DOI: 10.1007/s10933-011-9558-1
R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available online at: http://www.R-project.org/index.html
Ryves, D. B., D. H. Jewson, M. Sturm, R. W. Battarbee, R. J. Flower, A. W. Mackay & N. G. Granin. 2003. Quantitative and qualitative relationships between planktonic diatoms communities and diatom assemblages in sedimenting material and surface sediments in Lake Baikal, Siberia. Limnology and Oceanography 48: 1643-1661. DOI: 10.4319/lo.2003.48.4.1643
Ryves, D. B., N. J. Anderson, R. J. Flower & B. Ripper. 2013. Diatom taphonomy and silica cycling in two freshwater lakes and their implications for inferring past lake productivity. Journal of Paleolimnology 49: 411-430. DOI: 10.1007/s10933-013-9694-x
Vázquez, G. & M. Caballero. 2013. The structure and species composition of the diatom communities in tropical volcanic lakes of eastern Mexico. Diatom Research 28: 77-91. DOI: 10.1080/0269249X.2012.739974
Whittaker R. H. 1960. Vegetation of the siskiyou Mountains, Oregon and California. Ecological Monographs 30: 279-338. DOI: 10.2307/1943563
Winder M., J. E. Reuter & S. G. Schladow. 2009. Lake warming favours small-sized planktonic diatom species. Proceedings of the Royal Society B 276: 427-435. DOI: 10.1098/rspb.2008.1200
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, HIDROBIOLÓGICA reconoce y respeta el derecho moral de los autores, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Publicar en la revista HIDROBIOLÓGICA tiene un costo de recuperación de $500 pesos mexicanos por página en blanco y negro (aproximadamente 29 dólares americanos) y $1000 pesos por página a color (aproximadamente 58 dólares americanos).
Todos los textos publicados por HIDROBIOLÓGICA sin excepción se distribuyen amparados bajo la licencia Creative Commons 4.0Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en HIDROBIOLÓGICA (por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en HIDROBIOLÓGICA.
Para todo lo anterior, el o los autor(es) deben remitir el formato de Carta-Cesión de la Propiedad de los Derechos de la primera publicación debidamente requisitado y firmado por el autor(es). Este formato se puede enviar por correo electrónico en archivo pdf al correo: enlacerebvistahidrobiológica@gmail.com; rehb@xanum.uam.mx (Carta-Cesión de Propiedad de Derechos de Autor).
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.