Chlamydomonas Morphochemical characterization of Chlamydomonas during its blooming in a Mexican urban lake

Autores

  • José Luis Godínez Ortega Instituto de Biología, UNAM
  • Laura Peralta-Soriano Facultad de Estudios Superiores-Iztacala, UNAM
  • Alfonso Lugo-Vázquez Facultad de Estudios Superiores-Iztacala, UNAM
  • Marco Antonio Escobar-Oliva Facultad de Estudios Superiores-Iztacala, UNAM
  • María del Rosario Sánchez-Rodríguez Facultad de Estudios Superiores-Iztacala, UNAM
  • María Guadalupe Oliva-Martínez Facultad de Estudios Superiores-Iztacala, UNAM

Palavras-chave:

Chemical composition, Cytochemistry, SEM, TEM, Ultrastructure

Resumo

Background: Algal blooms have increased in frequency and intensity in recent decades. Excess nutrients of anthropogenic origin may be an essential factor that gives rise to these blooms. Goals: This work aimed to study an unusual bloom of the chlorophyte Chlamydomonas in an urban lake from a morphological and chemical approach. Methods: The study site was a small lake located in Cantera Oriente, Mexico City. Sampling was performed in February 2016 (the cold-dry season); environmental variables were measured in situ, and surface samples were obtained for organism abundance and chlorophyll-a concentration. An additional sample was freeze-dried for chemical analyses, and another sample was fixed in glutaraldehyde for ultrastructural studies by SEM, TEM, LM, and confocal microscopy, using the stain Nile red to detect the presence of intracellular lipids. Results: The results of morphological observations agreed with the characteristics of the description of C. reinhardtii. The bloom abundance values were high (6.98 x 105 ± 1.37 x 105 cells mL-1), confirmed by the high values of chlorophyll-a concentration (5548 ± 796 µg L-1). The carbohydrate:protein ratio of the cells (0.15) indicates high protein synthesis during the enormous algal proliferation. The low lipid content (6.5 %) is associated with the absence of intracellular lipid granules and may be related to the availability of nitrogen and phosphorus and high vegetative multiplication. C. reinhardtii synthesizes essential fatty acids, such as alpha-linolenic acid (Omega 3), a precursor of beneficial lipids in human cardiovascular and neurological health. Conclusions: The bloom consisted mainly of Chlamydomonas reinhardtii and it significantly correlated with the chlorophyll a concentration, indicating high photosynthetic capacity and active cell division. Linoleic acid (Omega 3), an important substance for human health, was present in the alga composition. A controlled culture of this alga could improve the Omega 3 concentration offering a biotechnological resource for the future.

Downloads

Não há dados estatísticos.

Referências

Agustina, S., N. N. Aidha, E. Oktarina & I. Setiawati. 2020. Antioxidant activity of Porphyridium cruentum water extracts for cosmetic cream. IOP Conference Series: Materials Science and Engineering 980: 012042. DOI:10.1088/1757-899X/980/1/012042

Allen, M. B. & D. I. Arnon. 1955. Studies on nitrogen-fixing blue-green algae. I. growth and nitrogen fixation by Anabaena cylindrica Lemm. Plant Physiology 30:366-372. DOI:10.1104/pp.30.4.366

Altman, J.C. & H. W. Paerl. 2012. Composition of inorganic and organic nutrient sources influences phytoplankton community structure in the New River Estuary, North Carolina. Aquatic Ecology 46:269- 282. DOI:10.1007/s10452-012-9398-8

AOAC INTERNATIONAL. 2019. Official methods of analysis of AOAC International, 21st ed., AOAC. Gaithersburg.

APHA, AWWA, WPCF, 1985. Standard methods for the examination of water and wastewater. 15th ed. APHA. Washington, DC.

Arar, E. J. & G. B. Collins. 1997. Method 445.0: In vitro determination of chlorophyll and pheophytin a in marine and freshwater algae by fluorescence. United States Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory.

Baldia, S. F., M. C. G. Conaco, T. Nishijima, S. Imanishi & K. I. Karada. 2003. Microcystin production during algal bloom occurrence in Laguna de Bay the Philippines. Fisheries Science 69:110-116. DOI:10.1046/j.1444-2906.2003. 00594.x

Barka A. & C. Blecker. 2016. Microalgae as a potential source of single-cell proteins. A review. Biotechnology, Agronomy, Society and Environment 20:427-436. DOI:10.25518/1780-4507.13132

Barreiro, A. &. N.G. Hairston, Jr. 2013. The influence of resource limitation on the allelopathic effect of Chlamydomonas reinhardtii on other unicellular freshwater planktonic organisms. Journal of Plankton Research 35:1339-1344. DOI:10.1093/plankt/fbt080

Basu, B. K. & F. R. Pick. 1997. Phytoplankton and zooplankton development in a lowland river. Journal of Plankton Research 19:237-253. DOI:10.1093/plankt/19.2.237

Becker, W. 2004. Microalgae in human and animal nutrition. In: Richmond, A. (ed.). Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing Ltd, Wiley Online Library, pp. 312-351.

Boyd, C. E. 2015. Microorganisms and water quality. In: Boyd, C.E. (ed.). Water quality. Springer International Publishing, Switzerland, pp. 189-222. DOI:10.1007/978-3-319-17446-4_10

Catalán, J. 1984. Agregados de algas en la superficie del agua (Delta del Llobregat). Anales de Biología 2 (Sección especial): 75-83.

Cuevas-Madrid, H., A. Lugo-Vázquez, L. Peralta-Soriano, J. Morlán-Mejía, G. Vilaclara-Fatjó, M.R. Sánchez-Rodríguez, M.A. Escobar-Oliva & J. Carmona-Jiménez. 2020. Identification of key factors affecting the trophic state of four tropical small water bodies. Water 12:1454. DOI:10.3390/w12051454

Dangeard, P. A. 1888. Recherches sur les algues inférieures. Annales des Sciences Naturelles; Botanique, sér. 7, 7:105-175.

Darwish, R., M. A. Gedi, P. Akepach, H. Assaye, A.S. Zaky, & D. A. Gray. 2020. Chlamydomonas reinhardtii is a potential food supplement with the capacity to outperform Chlorella and Spirulina. Applied Sciences 10(19):6736. DOI:10.3390/app10196736

Dean, A. P., J. M. Nicholson, &. D. C. Sigee. 2008. Impact of phosphorus quota and growth phase on carbon allocation in Chlamydomonas reinhardtii: an FTIR microspectroscopy study. European Journal of Phycology 43:345-354. DOI:10.1080/09670260801979287

El-Baz, K., S. M. Abdo & A. M. S. Hussein. 2017. Microalgae Dunaliella salina for use as food supplement to improve pasta quality. International Journal of Pharmaceutical Sciences Review and Research 46:45-51.

Espinal-Carreón, T., J. E. Sedeño, & E. López. 2013. Evaluación de la calidad del agua en la laguna de Yuriria, Guanajuato, México, mediante técnicas multivariadas: un análisis de valoración para dos épocas 2005, 2009-2010. Revista Internacional de Contaminación Ambiental 29:147-163.

Granéli, E., M. Weberg & P. S. Salomon. 2008. Harmful algal blooms of allelopathic microalgal species: The role of eutrophication. Harmful Algae 8:94-102. DOI: 10.1016/j.hal.2008.08.011

Greenspan, P., E. P. Mayer & S. D. Fowler. 1985. Nile red: a selective fluorescent stain for intracellular lipid droplets. Journal of Cell Biology 100:965-973. DOI:10.1083/jcb.100.3.965

Guiry, M. D. & G. M. Guiry. 2021. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available online at: https://www.algaebase.org (downloaded June 6 2021).

Hammer, Ø., D. A. T. Harper P. D. & Ryan. 2001. PAST: Paleontological Statistics Software Package for education and data analysis. Palaeontologia Electronica 4:9.

Heimerl, N., E. Hommel, M. Westermann, D. Meichsner, M. Lohr, C. Hertweck, A. R. Grossman, M. Mittag & S. Sasso. 2018. A giant type I polyketide synthase participates in zygospore maturation in Chlamydomonas reinhardtii. The Plant Journal 95:268-281. DOI:10.1111/tpj.13948

Hernández-Torres, A., A. L. Zapata-Morales, A. E. Ochoa Alfaro & R. E. Soria-Guerra. 2016. Identification of gene transcripts involved in lipid biosynthesis in Chlamydomonas reinhardtii under nitrogen, iron, and sulphur deprivation. World J Microbial Biotechnology 32:55. DOI: 10.1007/s11274-016-2008-5

Herrman, V. & F. Jüttner. 1977. Excretion products of algae. Identification of biogenic amines by gas-liquid chromatography and mass spectrometry of their trifluoroacetamides. Analytical Biochemistry 78:365-373.

Hixson, S. M. & M. T. Arts. 2016. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton. Global Change Biology 22:2744-2755. DOI:10.1111/gcb.13295

Janse van Vuuren, S. & A. H. J. Pieterse. 2005. The use of multivariate analysis as a tool to illustrate the influence of environmental variables on phytoplankton composition in the Vaal River, South Africa. African Journal of Aquatic Science 30:17-28. DOI:10.2989/16085910509503830

Jha, P., A. K. Biswas, B. L. Lakaria, R. Saha, M. Singh & A. Subba Rao. 2014. Predicting total organic carbon content of soils from Walkley and Black Analysis. Communications in Soil Science and Plant Analysis 45:713-725. DOI:10.1080/00103624.2013.874023

John, D. M., B. A. Whitton & A. J. Brook (eds.). 2011. The freshwater algal flora of the British Isles. An identification guide to freshwater and terrestrial algal. Cambridge University Press, Cambridge, 702 pp.

Kalisch, B., P. Dörmann & G. Hölzl. 2016. DGDG and Glycolipids in plants and algae. Subcellular Biochemistry 86:51-83. DOI:10.1007/978- 3-319-25979-6_3

Khozin-Goldberg, I. & Z. Cohen. 2006. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67:696-701. DOI: 10.1016/j.phytochem.2006.01.010

Kruskopf, M. M. & S. Du Plessis. 2004. Induction of both acid and alkaline phosphatase activity in two green-algae (Chlorophyceae) in low N and P concentrations. Hydrobiologia 513:59-70. DOI:10.1023/ B:hydr.0000018166.15764.b0

Lot, A. (Coord.) 2007. Guía ilustrada de la Cantera Oriente. Caracterización ambiental e inventario biológico. Universidad Nacional Autónoma de México, México, 253 pp.

Lugo-Vázquez, A., M. R. Sánchez-Rodríguez, J. Morlán-Mejía, L. Peralta-Soriano, E.A. Arellanes-Jiménez, M. A. Escobar-Oliva & M. G. Oliva-Martínez. 2017. Ciliates and trophic urban ponds in Mexico City. Journal of Environmental Biology 38 (Special issue):1161-1169. DOI:10.22438/jeb/38/6(SI)/01

Mansilla, M. C., L. E. Cybulski, D. Albanesi & D. de Mendoza. 2004. Control of membrane lipid fluidity by molecular thermosensors. Journal of Bacteriology 186:6681-6688. DOI:10.1128/JB.186.20.6681- 6688.2004

Millie, D. F., C. P. Dionigi, O. M. E. Schofield, G. T. Kirkpatrick & P. A. Tester. 1999. What is the importance for understanding the molecular, cellular, and ecophysiological bases of harmful algal blooms? Journal of Phycology 35:1353-1355.

Moellering, E. R. & C. Benning. 2010. RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryotic Cell 9:97-106. DOI:10.1128/EC.00203-09

Mohan, C. 2006. Buffers: A guide for the preparation and use of buffers in biological systems. EMD, Merck, San Diego, 32 pp.

Mowe, M. A., S. M. Mitrovic, R. P. Lim, A. Furey & D. C. Yeo. 2015. Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors. Journal of Limnology 74:205-224. DOI:10.4081/jlimnol.2014.1005

Ochoa-Alfaro, A.E. D. E. Gaytán-Luna, O. González-Ortega, K. G. Zavala-Arias, L. M. T. Paz-Maldonado, A. Rocha-Uribe & R. E. Soria-Guerra. 2019. pH effects on the lipid and fatty acids accumulation in Chlamydomonas reinhardtii. Biotechnology Progress 2019:e2891. DOI: 10.1002/ btpr.28

Oliveira, C. Y. B., T. L. Viegas, M. F. Oliveira da Silva, D. Machado-Fracalossi, R. Garcia-Lopes & R. Bianchini-Derner, R. 2020. Effect of trace metals on growth performance and accumulation of lipids, proteins, and carbohydrates on the green microalga Scenedesmus obliquus. Aquaculture International 28:1435-1444. DOI:10.1007/s10499- 020-00533-0

Pascher, A. von. 1927. Volvocales Phytomonadinae Flagellate I- Chlorophyceae I. In: Pascher, A. (ed.). Die Süwasserflora Deutschlands. Österreichs Und Der Schweiz. Herausgegerben. Gustav Fischer, Jena, No. 4.

Pehrsson, P., K. Patterson, D. Haytowitz & K. Phillips. 2015. Total carbohydrate determinations in USDA’s National Nutrient Database for Standard Reference. The Federation of American Societies for Experimental Biology Journal 29:740-746. DOI: 10.1096/fasebj.29.1_ supplement.740.6

Pieterse, A. J. H. & S. Janse van Vuuren. 1997. An investigation into phytoplankton blooms in the Vaal River and the environmental variables responsible for their development and decline. Report to the Water Research Commission by the Department of Plant and Soil Sciences. Potchefstroom University for CHE. Water Research Commission (SA) Report, 359/1/97.

Pröschold, T., T. Darienko, L. Krienitz & A. W. Coleman. 2018. Chlamydomonas schloesseri sp. nov. (Chlamydophyceae, Chlorophyta) revealed by morphology, autolysin cross experiments, and multiple gene analyses. Phytotaxa 362:21-38. DOI:10.11646/phytotaxa.362.1.2

Reynolds, C. S. 1984. Ecology of phytoplankton. Cambridge University Press, Cambridge, 384 pp.

River Science. 2005. Algal blooms in the Swan-Canning estuary: patterns, causes and history. Government of Western Australia Issue 3, 12 pp. https://www.dpaw.wa.gov.au/images/documents/conservation-management/riverpark/fact-sheets/River%20Science%20 3%20-%20Algal%20Blooms.pdf

Salas-Montantes, C. J., O. González-Ortega, A. E. Ochoa-Alfaro, R. Camarena-Rangel, L. M. T. Paz-Maldonado, S. Rosales-Mendoza, A. Rocha-Uribe & R. E. Soria-Guerra. 2018. Lipid accumulation during nitrogen and sulfur starvation in Chlamydomonas reinhardtii overexpressing a transcription factor. Journal of Applied Phycology 30:1721-1733. DOI: 10.1007/s10811-018-1393-6

Scranton, M. A., J. T. Ostrand, F. J. Fields & S. P. Mayfield. 2015. Chlamydomonas as a model for biofuels and bio-products production. The Plant Journal 82:523-531. DOI:10.1111/tpj.12780

Siaut, M., S. Cuiné, C. Cagnon, B. Fessler, M. Nguyen, P. Carrier, A. Beyly, F. Beisson, C. Triantaphylidès, Y. Li-Beisson & G. Peltier. 2011. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnology 11:7. http:// www.biomedcentral.com/1472-6750/11/7

Smith, D. R., H. P. Jarvie & M. J. Bowes. 2017. Carbon, nitrogen, and phosphorus stoichiometry and eutrophication in River Thames Tributaries, UK. Agricultural & Environmental Letters 2:170020. DOI:10.2134/ael2017.06.0020

Toledo, J., M. Esteve, M. Grasa, A. Ledda, H. Gardac, J. Gulfo, I. Díaz Ludovico, N. Ramella & M. Gonzalez. 2016. Data related to inflammation and cholesterol deposition triggered by macrophages exposition to modified LDL. Data in Brief 8:251-257.

Valderrama, J. C. 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry 10:109-122.

Wetzel, R. G. & G. E. Likens. 2000. Limnological analyses. Springer Verlag, New York, 419 pp.

Publicado

2023-02-06

Como Citar

Godínez Ortega, J. L., Peralta-Soriano, L. ., Lugo-Vázquez, A., Escobar-Oliva, M. A. ., Sánchez-Rodríguez, M. del R. ., & Oliva-Martínez, M. G. (2023). Chlamydomonas Morphochemical characterization of Chlamydomonas during its blooming in a Mexican urban lake. HIDROBIOLÓGICA, 33(1). Recuperado de https://hidrobiologica.izt.uam.mx/index.php/revHidro/article/view/1662

Edição

Seção

Artículos

Artigos mais lidos pelo mesmo(s) autor(es)