Aislamiento y caracterización de nuevos marcadores microsatélites para la almeja generosa (Panopea generosa ) por medio de secuenciación de nueva generación

Autores/as

  • Celia Isabel Bisbal Pardo Molecular Ecology Laboratory, Biological Oceanography Department, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, Baja California, 22860, México
  • Miguel Angel Del Río Portilla Genetics Laboratory, Aquaculture Department, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, Baja California, 22860, México
  • Ana Yonori Castillo Paez Molecular Ecology Laboratory, Biological Oceanography Department, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, Baja California, 22860, México
  • Axayacatl Rocha Olivares Centro de Investigación Científica y de Educación Superior de Ensenada http://orcid.org/0000-0002-2700-9086

DOI:

https://doi.org/10.24275/uam/izt/dcbs/hidro/2018v28n1/Rocha

Palabras clave:

marcadores genéticos, microsatélites, Panopea generosa, secuenciación de siguiente generación

Resumen

Antecedentes. Panopea generosa es una almeja de gran tamaño, infáunica y longeva con un valor comercial considerable en Canadá, Estados Unidos y México, y de la que se requiere conocer su estructura genética poblacional a lo largo de su rango de distribución. Objetivos. Desarrollar nuevos marcadores microsatélites específicos para P. generosa. Métodos. En este reporte evaluamos 30 loci microsatélites generados mediante secuenciación genómica de siguiente generación (Illumina Hi-Seq 2500). Resultados. Se identificaron a ocho como marcadores genéticos polimórficos adecuados. El número de alelos por locus varió entre 5 y 22, la heterocigosidad observada entre 0.429 y 0.818 y la esperada entre 0.548 y 0.962. Tres marcadores se desviaron del equilibrio de Hardy-Weinberg, después de la corrección de DunnŠidák, como resultado de un déficit de heterocigosidad, sugiriendo la presencia de alelos nulos y se encontró desequilibrio de ligamiento entre dos microsatélites. Conclusiones. Estos marcadores son altamente informativos y útiles para estudios de genética poblacional encaminados a la implementación de medidas de administración y conservación de este valioso recurso.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Axayacatl Rocha Olivares, Centro de Investigación Científica y de Educación Superior de Ensenada

Investigador Titular D

Citas

Abdelkrim, J., B. Robertson, J. A. Stanton & N. Gemmell. 2009. Fast, costeffective development of species-specific microsatellite markers by genomic sequencing. BioTechniques 46 (3):185-192. DOI:10.2144/000113084.

Ahanchede, A., J. E. F. Alfaya, L. W. Andersen, D. Azam, M. A. M. Bautista, A. L. Besnard, G. Bigatti, A. Bouetard, M. A. Coutellec, E. E. B. K. Ewedje, R. Fuseya, R. Garcia-Jimenez, M. Haratian, O. J. Hardy, L. E. Holm, C. W. Hoy, E. Koshimizu, V. Loeschcke, V. Lopez-Marquez, C. A. Machado, A. Machordom, C. Marchi, A. P. Michel, C. Micheneau, O. Mittapalli, T. Naga i, N. Okamoto, Y. Pan, F. Panitz, N. Safaie, T. Sakamoto, B. Sharifnabi, E. W. Tian, H. Yu & M. E. R. P. Dev. 2013. Permanent Genetic Resources added to Molecular Ecology Resources Database 1 August 2012-30 September 2012. Molecular Ecology Resources 13 (1):158-159. DOI:10.1111/1755-0998.12035.

Amos, W., J. I. Hoffman, A. Frodsham, L. Zhang, S. Best & A. V. S. Hill. 2007. Automated binning of microsatellite alleles: problems and solutions. Molecular Ecology Notes 7 (1):10-14. DOI:10.1111/j.1471-8286.2006.01560.x.

An, H. S. & J. W. Lee. 2012. Development of microsatellite markers for the Korean mussel, Mytilus coruscus (Mytilidae) using next-generation sequencing. International Journal of Molecular Sciences 13 (8):10583-10593. DOI:10.3390/ijms130810583.

Arag ón-Noriega, E. A., E. Alcántara-Razo, L. E. Calderón-Aguilera & R. Sánchez-Fourcade. 2012. Status of Geoduck clam fisheries in Mexico. Journal of Shellfish Research 31 (3):733-738. DOI:10.2983/035.031.0317.

Becquet, V., I. Lanneluc, B. Simon-Bouhet & P. García. 2009. Microsatellite markers for the Baltic clam, Macoma balthica (Linne, 1758), a key species concerned by changing southern limit, in exploited littoral ecosystems. Conservation Genetics Resources 1 (1): 265-267. DOI:10.1007/s12686-009-9065-0.

Bisbal-Pardo, C. I. 2014. Secuenciación masiva de Panopea generosa y Panopea globosa para el desarrollo de marcadores moleculares. Tesis de maestría, Centro de Investigación Científica y de Educación Superior de Ensenada, B.C., México.

Bisbal-Pardo, C. I., M. Á. Del Río-Portilla, A. Y. Castillo-Paéz & A. Rocha-Olivares. 2016. Isolation and characterization of new microsatellite markers for the cortés Geoduck (Panopea globosa). CICIMAR Oceánides 31 (1): 17-22.

Bureau, D., W. Hajas, N. Surry, C. Hand, G. Dovey & A. Campbell. 2002. Age, size structure and growth parameters of geoducks (Panopea abrupta, Conrad 1849) from 34 locations in British Columbia sampled between 1993 and 2000. Canadian Technical Report of Fisheries and Aquatic Sciences 2413:1-84.

Calderón-Aguilera, L. E., E. A. Arag ón-Noriega, C. M. Hand & V. M. Moreno-Rivera. 2010. Morphometric relationships, age, growth, and mortality of the geoduck clam, Panopea generosa, along the Pacific coast of Baja California, Mexico. Journal of Shellfish Research 29 (2): 319-326. DOI:10.2983/035.029.0206.

Castoe, T. A., A. W. Poole, A. P. J. de Koning, K. L. Jones, D. F. Tomback, S. J. Oyler-McCance, J. A. Fike, S. L. Lance, J. W. Streicher, E. N. Smith & D. D. Pollock. 2012. Rapid microsatellite identification from Illumina paired-end genomic sequencing in two birds and a snake. PLoS One 7 (2): e30953. DOI:10.1371/journal.pone.0030953.

Castoe, T. A., A. W. Poole, W. Gu, A. P. J. de Koning, J. M. Daza, E. N. Smith & D. D. Pollock. 2010. Rapid identification of thousands of copperhead snake (Agkistrodon contortrix) microsatellite loci from modest amounts of 454 shotgun genome sequence. Molecular Ecology Resources 10 (2): 341-347. DOI:10.1111/j.1755-0998.2009.02750.x.

Cruz-Hernández, P., A. Munguia-Vega, I. Leyva-Valencia, F. Lucero-Burquez & D. B. Lluch-Cota, 2014. Development of 24 tetra-nucleotide microsatellite markers in Cortes Geoduck Panopea globosa by next-generation sequencing. Conservation Genetics Resources 6 (3): 531-533. DOI:10.1007/s12686-014-0172-1.

Csencsics, D., S. Brodbeck & R. Holderegger . 2010. Cost-effective, speciesspecific microsatellite development for the endangered dwarf bulrush (Typha minima) using next-generation sequencing technology. Journal of Heredity 101 (6): 789-793. DOI:10.1093/Jhered/Esq069.

Ekblom, R. & J. Galindo. 2011. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107 (1):1. DOI:10.1038/hdy.2010.152.

Evans, S. R. & B. C. Sheldon. 2008. Interspecific patterns of genetic diversity in birds: correlations with extinction risk. Conservation Biology 22 (4): 1016-25. DOI:10.1111/j.1523-1739.2008.00972.x.

Excoffier, L., G. Lava l & S. Schneider. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47-50.

Greenley, A. P., A. Muguía-Vega, A. Saenz-Arroyo & F. Micheli. 2012. New tetranucleotide microsatellite loci in pink abalone (Haliotis corrugata) isolated via 454 pyrosequencing. Conservation Genetics Resources 4 (2): 265-268. DOI:10.1007/s12686-011-9521-5.

Guichoux, E., L. Laga che, S. Wag ner, P. Chaumeil, P. Leger, O. Lepais, C. Lepoittevin, T. Malausa, E. Revardel, F. Salin & R. J. Petit. 2011. Current trends in microsatellite genotyping. Molecular Ecology Resources 11 (4): 591-611. DOI:10.1111/J.1755-0998.2011.03014.X.

Hedgecock, D., G. Li, S. Hubert, K. Bucklin & V. Ribes. 2004. Widespread null alleles and poor cross-species amplification of microsatellite DNA loci cloned from the Pacific oyster, Crassostrea gigas. Journal of Shellfish Research 23 (2): 379-385.

Huang, J., Y. Z. Li, L. M. Du, B. Yang, F. J. Shen, H. M. Zhang, Z. H. Zhang, X. Y. Zhang & B. S. Yue. 2015. Genome-wide survey and analysis of microsatellites in giant panda (Ailuropoda melanoleuca), with a focus on the applications of a novel microsatellite marker system. BMC Genomics 16: 61. DOI:10.1186/s12864-015-1268-z.

Inoue, K., B. K. Lang & D. J. Berg. 2013. Development and characterization of 20 polymorphic microsatellite markers for the Texas hornshell, Popenaias popeii (Bivalvia: Unionidae), through next-generation sequencing. Conservation Genetics Resources 5 (1): 195-198. DOI:10.1007/s12686-012-9766-7.

Jarne, P. & P. J. L. Lag oda. 1996. Microsatellites, from molecules to populations and back. Trends in Ecology & Evolution 11 (10): 424-429. DOI:10.1016/0169-5347(96)10049-5.

Kaukinen, K., K. Supernault & K. Miller. 2004. Enrichment of tetranucleotide microsatellite loci from invertebrate species. Journal of Shellfish Research 23 (2): 621-627.

Lance, S. L., C. N. Love, S. O. Nunziata, J. R. O’Bryhim, D. E. Scott, R. W. Flynn & K. L. Jones. 2013. 32 species validation of a new Illumina pairedend approach for the development of microsatellites. PLoS One 8 (11): e81853. DOI:10.1371/journal.pone.0081853.

McInerney, C. E., A. L. Allcock, M. P. Johnson, D. A. Bailie & P. A. Prodohl.2011. Comparative genomic analysis reveals species-dependent complexities that explain difficulties with microsatellite marker development in molluscs. Heredity 106 (1): 78-87. DOI:10.1038/hdy.2010.36.

Miller, K. M., K. J. Supernault, S. Li & R. E. Withler. 2006. Population Structure in Two Marine Invertebrate Species (Panopea abrupta and Strongylocentrotus franciscanus) Targeted for Aquaculture and Enhancement in British Columbia. Journal of Shellfish Research 25 (1): 33-42. DOI:10.2983/0730-8000(2006)25[33:psitmi]2.0.co;2.

Mira, Ó., J. G. Martínez, D. A. Daw son, A. Tinaut & C. Sánchez-Prieto. 2014. Twenty new microsatellite loci for population structure and parentage studies of Parnassius apollonevadensis (Lepidoptera; Papilionidae). Journal of insect conservation 18 (5): 771-779. DOI:10.1007/s10841-014-9683-z.

O’Bryhim, J., J. P. Chong, S. L. Lance, K. L. Jones & K. J. Roe. 2012. Development and characterization of sixteen microsatellite markers for the federally endangered species: Leptodea leptodon (Bivalvia: Unionidae) using paired-end Illumina shotgun sequencing. Conservation Genetics Resources 4 (3): 787-789. DOI:10.1007/s12686-012-9644-3.

Orensanz, J., C. M. Hand, A. M. Parma, J. Valero & R. Hilborn. 2004. Precaution in the harvest of Methuselah’s clams the difficulty of getting timely feedback from slow-paced dynamics. Canadian Journal of Fisheries and Aquatic Sciences 61 (8): 1355-1372. DOI:10.1139/F04-136.

Park, S. 2001. MStools v 3 (Excel spreadsheet toolkt for data conversion). Smurfit Institute of Genetics. Trinity College, Dublin.

Peñarrubia, L., N. Sanz, C. Pla, O. Vidal & J. Viñas. 2015. Using massive parallel sequencing for the development, validation, and application of population genetics markers in the invasive bivalve zebra mussel (Dreissena polymorpha). PLoS One 10 (3): e0120732. DOI:10.1371/journal.pone.0120732.

Selkoe, K. A. & R. J. Toonen. 2006. Microsatellites for ecologists: a practical

guide to using and evaluating microsatellite markers. Ecology Letters 9 (5): 615-629. DOI:10.1111/j.1461-0248.2006.00889.x.

Šidák, Z. K., 1967. Rectangular confidence regions for the means of multivariate normal distributions. Journal of the American Statistical Association 62 (318): 626-633. DOI:10.1080/01621459.1967.10482935.

Sloan, N. & S. Robinson. 1984. Age and gonadal development in the geoduck clam Panope abrupta (Conrad) from southern British Columbia, Canada. Journal of Shellfish Research 4:131-137.

Straus, K. M., L. M. Crosson & B. Vadopalas. 2008. Effects of Geoduck Aquaculture on the Environment: A Synthesis of Current Knowledge. School of Aquatic and Fishery Sciences, University of Washington, Washington, 67 p.

Suárez-Moo, P. J., E. A. Gilbert-Horvath, B. Vadopalas, L. E. Calderón-Aguilera, J. C. Garza & A. Rocha-Olivares. 2016. Genetic homogeneity of the geoduck clam Panopea generosa in the northeast Pacific. Biochemical

Systematics and Ecology 65: 66-71. DOI:10.1016/j.bse.2016.02.003.

Taberlet, P. & G. Luikart. 1999. Non-invasive genetic sampling and individual identification. Biological Journal of the Linnean Society 68 (1-2): 41-55. DOI:10.1111/j.1095-8312.1999.tb01157.x.

Vadopalas, B. & P. Bentzen. 2000. Isolation and characterization of diand tetranucleotide microsatellite loci in geoduck clams, Panopea abrupta. Molecular Ecology 9 (9): 1435-1436. DOI:10.1046/J.1365-294x.2000.01000-2.X.

Vadopalas, B., L. L. Leclair & P. Bentzen. 2004. Microsatellite and allozyme analyses reveal few genetic differences among spatially distinct aggregations of geoduck clams (Panopea abrupta, Conrad 1849). Journal of Shellfish Research 23 (3): 693-706.

Vadopalas, B., L. L. Leclair & P. Bentzen. 2012. Temporal Genetic Similarity Among Year-Classes of the Pacific Geoduck Clam (Panopea generosa Gould 1850): A Species Exhibiting Spatial Genetic Patchiness. Journal of Shellfish Research 31 (3): 697-709. DOI:10.2983/035.031.0314.

Vadopalas, B., T. W. Pietsch & C. S. Friedman. 2010. The proper name for the geoduck: resurrection of Panopea generosa Gould, 1850, from the synonymy of Panopea abrupta (Conrad, 1849) (Bivalvia: Myoida: Hiatellidae). Malacologia 52 (1): 169-173. DOI:10.4002/040.052.0111.

Van Oosterhout, C., W. F. Hutchinson, D. P. M. Wills & P. Shipley. 2004. MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4 (3): 535-538.

Xiao, Y. J., D. F. Cai, W. Yang, W. Ye, M. Younas, J. S. Wu & K. D. Liu. 2012. Genetic structure and linkage disequilibrium pattern of a rapeseed (Brassica napus L.) association mapping panel revealed by microsatellites. Theoretical and Applied Genetics 125 (3): 437-447. DOI:10.1007/s00122-012-1843-5.

Zane, L., L. Bargelloni & T. Patarnello. 2002. Strategies for microsatellite isolation: a review. Molecular Ecology 11 (1): 1-16. DOI:10.1046/j.0962-1083.2001.01418.x.

Descargas

Publicado

2018-05-30

Cómo citar

Bisbal Pardo, C. I., Del Río Portilla, M. A., Castillo Paez, A. Y., & Rocha Olivares, A. (2018). Aislamiento y caracterización de nuevos marcadores microsatélites para la almeja generosa (Panopea generosa ) por medio de secuenciación de nueva generación. HIDROBIOLÓGICA, 28(1), 151–155. https://doi.org/10.24275/uam/izt/dcbs/hidro/2018v28n1/Rocha

Número

Sección

Nota Científica