Recruitment of Pocillopora coral on experimental tiles in the Mexican Pacific

Pocillopora recruitment in the Mexican Pacific

Authors

  • J. Fernando Alvarado-Rodríguez Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California
  • Calderon-Aguilera, L. E. Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California https://orcid.org/0000-0001-5427-6043
  • Cabral-Tena, R. A. Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California

Keywords:

Coral recruitment, experimental substrate, terracotta tiles, Mexican pacific

Abstract

Background. The recruitment of branching corals in the eastern Pacific is poorly understood despite being of paramount importance to the dynamics of coral populations. Experimental studies provide a non-destructive means to evaluate recruitment and compare settlement materials. Goals. To study Pocillopora recruitment on PVC and terracotta tiles in Bahía Ixtapa-Zihuatanejo (Mexican Pacific). Methods. We deployed 40 square (10 x 10 x 0.5 cm) experimental (20 PVC and 20 unglazed terracotta) tiles arranged as Calcification/Accretion Units at the Islote Zacatoso reef. Results. We observed two coral recruits at the edges of terracotta tiles, presumably due to light availability, and no recruits on horizontal sides, which may have been due to siltation stress, predation, or biofouling. No recruits were found on PVC tiles. Conclusions. Our findings indicate that the coral recruitment is low in the study area and that the terracotta tiles may be a better experimental substrate than PVC tiles to assess pocilloporid coral recruitment in the Mexican Pacific; however, further studies are needed to clarify this assumption.

Downloads

Download data is not yet available.

Author Biographies

Calderon-Aguilera, L. E. , Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California

I'm a marine ecologist and my research interests broadly speaking are on trying to understand the effect of climate change on the structure and functioning of marine ecosystems and adaptive management of coastal fisheries. My goal as a researcher is to propose alternatives for the correct management and sustainable use of natural resources, based on ecological knowledge and under criteria of common good, which have an impact on social welfare.

Cabral-Tena, R. A., Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California

Rafael Andrés Cabral-Tena currently works at the Department of Marine Ecology, Ensenada Center for Scientific Research and Higher Education. Rafael does research in Zoology, Marine Biology and Ecology

References

Alvarado-Rodríguez, J. F., H. Nava & J. L. Carballo. 2019. Spatio-temporal variation in rate of carbonate deposition by encrusting organisms in different reef microhabitats from Eastern Pacific coral reefs. Journal of the Marine Biological Association of the United Kingdom 99(7): 1495-1505. DOI: 10.1017/S0025315419000638

Alvarado-Rodríguez, J. F., L. E. Calderon-Aguilera, R. A. Cabral-Tena, C. O. Norzagaray-López, H. Nava, L. Peiffer & R. G. Fernández-Aldecoa. 2022. High sclerobiont calcification in marginal reefs of the eastern tropical Pacific. Journal of Experimental Marine Biology and Ecology 557: 151800. DOI: 10.1016/j.jembe.557 (2022):151800

Alvarado-Rodríguez, J. F., R. A. Cabral-Tena, C. O. Norzagaray-López & L. E. Calderon-Aguilera. 2021. The despised role of sclerobionts of a coral community from the eastern tropical Pacific. Reef Encounter 36: 47-49. DOI: https://doi.org/10.53642/ZDYP7642

Babcock, R. & P. Davies. 1991. Effects of sedimentation on settlement of Acropora millepora. Coral Reefs 9: 205-208. DOI: 10.1007/ BF00290423

Cabral-Tena, R. A., D. A. Paz-García, H. Reyes-Bonilla, S. S. González-Peláez & E. F. Balart. 2018. Spatiotemporal variability in coral (Anthozoa: Scleractinia) larval recruitment in the Southern Gulf of California. Pacific Science 72(4): 435-447. DOI: 10.2984/72.4.4

Cameron, K. A. & P. L. Harrison. 2020. Density of coral larvae can influence settlement, post-settlement colony abundance and coral cover in larval restoration. Scientific Reports 10(1): 5488. DOI: 10.1038/ s41598-020-62366-4

Carpizo-Ituarte, E., V. Vizcaíno-Ochoa, G. Chi-Barragán, O. Tapia-Vázquez, A. Cupul-Magaña & P. Medina-Rosas. 2011. Evidence of sexual reproduction in the hermatypic corals Pocillopora damicornis, Porites panamensis, and Pavona gigantea in Banderas Bay, Mexican Pacific. Ciencias Marinas 37(1): 97-112. DOI: 10.7773/cm.v37i1.1773

Chávez-Romo, H. E. & H. Reyes-Bonilla. 2007. Sexual reproduction of the coral Pocillopora damicornis in the southern Gulf of California, Mexico. Ciencias Marinas 33(4): 495-501. DOI: 10.7773/cm.v33i4.1141

Doropoulos, C., G. Roff, Y. Bozec, M. Zupan, J. Werminghausen & P. J. Mumby. 2016. Characterizing the ecological trade-offs throughout the early ontogeny of coral recruitment. Ecological Monographs 86: 20-44. DOI: 10.1890/15-0668.1

dos Reis, V. M., C. S. Karez, R. Mariath, F. C. de Moraes, R. T. de Carvalho, P. S. Brasileiro, R. da G. Bahia, T. M. da C. Lotufo, L. V. Ramalho, R. L. de Moura, R. B. Francini-Filho, G. H. Pereira-Filho, F. L. Thompson, A. C. Bastos, L. T. Salgado & G. M. Amado-Filho. 2016. Carbonate Production by Benthic Communities on Shallow Coralgal Reefs of Abrolhos Bank, Brazil. PloS One 11(4): e0154417. DOI: 10.1371/journal. pone.0154417

Elmer, F., J. J. Bell, & J. P. A. Gardner. 2018. Coral larvae change their settlement preference for crustose coralline algae dependent on availability of bare space. Coral Reefs 37(2): 397-407. DOI: 10.1007/s00338-018-1665-2

Field, S. N., D. Glassom & J. Bythell. 2007. Effects of artificial settlement plate materials and methods of deployment on the sessile epibenthic community development in a tropical environment. Coral Reefs 26(2): 279-289. DOI: 10.1007/s00338-006-0191-9

English, S., C. Wilkinson, & V. Baker. 1997 (eds). Survey manual for tropical marine resources. 2nd ed. Australian Institute of Marine Science. Townsville, Australia.

Gallagher, C. & C. Doropoulos. 2017. Spatial refugia mediate juvenile coral survival during coral-predator interactions. Coral Reefs 36(1): 51-61. DOI: 10.1007/s00338-016-1518-9

Glassom, D., D. Zakai, & N. E. Chadwick-Furman. 2004. Coral recruitment: a spatio-temporal analysis along the coastline of Eilat, northern Red Sea. Marine Biology 144(4): 641-651. DOI: 10.1007/s00227-003- 1243-0

Glynn, P. W., N. J. Gassman, C. M. Eakin, J. Cortes, D. B. Smith & H. M. Guzman. 1991. Reef coral reproduction in the eastern Pacific: Costa Rica, Panama, and Galapagos Islands (Ecuador) - I. Pocilloporidae. Marine Biology 109: 355-368. DOI: 10.1007/BF01313501

Glynn, P. W., D. P. Manzello & I. C. Enochs (eds). 2017. Coral Reefs of the Eastern Tropical Pacific: Persistence and Loss in a Dynamic Environment. Springer Nature. DOI: 10.1007/978-94-017-7499-4

Harper, L. M., L. K. Huebner, E. D. O’Cain, R. Ruzicka, D. F. Gleason & N. D. Fogarty. 2021. Methodological recommendations for assessing scleractinian and octocoral recruitment to settlement tiles. PeerJ 9: e12549. DOI: 10.7717/peerj.12549

Harriott, V. & D. Fisk. 1987. A comparison of settlement plate types for experiments on the recruitment of scleractinian corals. Marine Ecology Progress Series 37: 201-208. DOI: 10.3354/meps037201

Heyward, A. J. & A. P. Negri. 1999. Natural inducers for coral larval metamorphosis. Coral Reefs 18(3): 273-279. DOI: 10.1007/ s003380050193

Highsmith, R. C. 1982. Reproduction by Fragmentation in Corals. Marine Ecology Progress Series 7: 207-226.

Johnson, M. D., N. N. Price, & J. E. Smith. 2022. Calcification Accretion Units (CAUs): A standardized approach for quantifying recruitment and calcium carbonate accretion in marine habitats. Methods in Ecology and Evolution 2022 (00): 1-11. DOI: 10.1111/2041- 210x.13867

Jokiel, P. L., K. S. Rodgers, C. D. Storlazzi, M. E. Field, C. V. Lager, D. Lager. 2014. Response of reef corals on a fringing reef flat to elevated suspended-sediment concentrations: Molokaʻi, Hawaiʻi. PeerJ 2: e699. DOI: 10.7717/peerj.699

Jorissen, H., P. E. Galand, I. Bonnard, S. Meiling, D. Raviglione, A.-L. Meistertzheim, L. Hédouin, B. Banaigs, C. E. Payri & M. M. Nugues. 2021. Coral larval settlement preferences linked to crustose coralline algae with distinct chemical and microbial signatures. Scientific Reports 11: 14610. DOI: 10.1038/s41598-021-94096-6

López-Pérez, R. A., M. G. Mora-Pérez, & G. E. Leyte-Morales. 2007. Coral (Anthozoa: Scleractinia) recruitment at Bahías de Huatulco, Western México: Implications for coral community structure and dynamics. Pacific Science 61(3): 355-369. DOI: 10.2984/1534-6188(2007)61[355:CASRAB]2.0.CO;2

Medina-Rosas, P., J. D. Carriquiry, & A. L. Cupul-Magaña. 2005. Recruitment of Porites (Scleractinia) on artificial substrate in reefs affected by the 1997-98 El Nino in Banderas Bay, Mexican Pacific. Ciencias Marinas 31(1A): 103-109.

Melo-Merino, S. M. 2009. Diversidad y abundancia de corales hermatípicos reclutados in situ y en sustrato artificial en el parque nacional sistema arrecifal veracruzano. Tesis de Licenciatura en Biología, Instituto Tecnológico de Boca del Río, Boca del Río, Veracruz, México. 67 pp.

Morse, D. E., N. Hooker, A. N. C. Morse & R. A. Jensen. 1988. Control of larval metamorphosis and recruitment in sympatric agariciid corals. Journal of Experimental Marine Biology and Ecology 116(3): 193-217. DOI: 10.1016/0022-0981(88)90027-5

Morse, D. E. & A. N. C. Morse. 1996. Flypapers for Coral and Other Planktonic Larvae. BioScience 46(4): 254-262. DOI: 10.2307/1312832

Nava, H., J. F. Alvarado-Rodríguez, M. Á. Cárdenas-Alvarado, I. Magaña-Sánchez & J. C. Cristóbal-Aguilar. 2022. Effect of the El Niño 2015-16 on the assemblages of reef building sclerobionts in a coral reef from the eastern Pacific coast. Marine Biology 169(8): 106. DOI: 10.1007/ s00227-022-04083-2

Orrante-Alcaraz, J. M., J. L. Carballo & B. Yáñez. 2023. Seasonal net calcification by secondary calcifiers in coral reefs of the Eastern Tropical Pacific Ocean. Marine Biology 170(2): 16. DOI: 10.1007/ s00227-022-04158-0

Price, N. N., S. Muko, L. Legendre, R. Steneck, M. J. H. van Oppen, R. Albright, P. Ang Jr., R. C. Carpenter, A. P. Y. Chui, T. -Y. Fan, R. D. Gates, S. Harii, H. Kitano, H. Kurihara, S. Mitarai., J. L. Padilla-Gamiño, K. Sakai, G. Suzuki & P. J. Edmunds. 2019. Global biogeography of coral recruitment: Tropical decline and subtropical increase. Marine Ecology Progress Series 621: 1-17. DOI: 10.3354/meps12980

Price, N. N., T. R. Martz, R. E. Brainard & J. E. Smith. 2012. Diel Variability in Seawater pH Relates to Calcification and Benthic Community Structure on Coral Reefs. PLoS One 7(8): e43843. DOI: 10.1371/ journal.pone.0043843

Richmond, R. H. 1987. Energetic relationships and biogeographical differences among fecundity, growth, and reproduction in the reef coral Pocillopora damicornis. Bulletin of Marine Science 41(2): 594-604.

Richmond, R. H. 1997. Reproduction and recruitment in corals: critical links in the persistence of reefs. In: Birkeland CE (eds) Life and death of coral reefs. Chapman & Hall, New York, pp. 175-197.

Santiago-Valentín, J. D., A. P. Rodríguez-Troncoso, E. Bautista-Guerrero, A. López-Pérez & A. L. Cupul-Magaña. 2020. Settlement ecology of scleractinian corals of the Northeastern Tropical Pacific. Coral Reefs 39(1): 133-146. DOI: 10.1007/s00338-019-01872-y

Soong, K., M. H. Chen, C. L. Chen, C. F. Dai, T. Y. Fan, J. J. Li, H. Fan, K. Kou & H. Hsieh. 2003. Spatial and temporal variation of coral recruitment in Taiwan. Coral Reefs 22(3): 224-228. DOI: 10.1007/s00338-003- 0311-8

Tanvet, C., F. Benzoni, C. Peignon, G. Thouzeau & R. Rodolfo-Metalpa. 2022. High coral recruitment despite coralline algal loss under extreme environmental conditions. Frontiers in Marine Science 9(June): 1-15. DOI: 10.3389/fmars.2022.837877

Te, F. T. 1992. Response to higher sediment loads by Pocillopora damicornis planulae. Coral Reefs 11: 131-134. DOI: 10.1007/ BF00255466

Tebben, J., C. A. Motti, N. Siboni, D. M. Tapiolas, A. P. Negri, P. J. Schupp, M. Kitamura, M. Hatta, P. D. Steinberg & T. Harder. 2015. Chemical mediation of coral larval settlement by crustose coralline algae. Scientific Reports 5: 1-11. DOI: 10.1038/srep10803

Tomascik, T. 1991. Settlement patterns of Caribbean scleractinian corals on artificial substrata along a eutrophication gradient, Barbados, West Indies. Marine Ecology Progress Series 77(2-3): 261-269. DOI: 10.3354/meps077261

Vargas-Ángel, B., C. L. Richards, P. S. Vroom, N. N. Price, T. Schils, C. W. Young, J. Smith, M. D. Johnson & R. E. Brainard. 2015. Baseline assessment of net calcium carbonate accretion rates on U.S. pacific reefs. PLoS ONE 10(12): 1-25. DOI: 10.1371/journal.pone.0142196

Downloads

Published

2023-05-10

How to Cite

Alvarado-Rodríguez, J. F., Calderon-Aguilera, L. E., & Cabral-Tena, R. A. . (2023). Recruitment of Pocillopora coral on experimental tiles in the Mexican Pacific: Pocillopora recruitment in the Mexican Pacific. HIDROBIOLÓGICA, 33(3). Retrieved from https://hidrobiologica.izt.uam.mx/index.php/revHidro/article/view/1667

Issue

Section

Nota Científica