Differential effects on the toxicity and bioconcentration of hexavalent and trivalent chromium on the rotifer Lecane papuana (Murray, 1913) (Monogononta: Lecanidae)
Differential Effects of chromium in the rotifer Lecane papuana
Keywords:
alternative test organisms, bioconcentration factor (BCF), intrinsic growth rate, lethal median concentration (LC50), metalsAbstract
Background: While naturally occurring, heavy metals such as chromium, lead, and mercury also reach aquatic environments via anthropogenic activities, sometimes at alarming concentrations thereby altering the dynamics of the communities. Chromium, which is present in the discharge from automotive and tannery industries, occurs in two stable forms: trivalent (Cr III) and hexavalent (Cr VI). Because these forms differ in their chemical properties, their bioavailability differs and, as a result, so does their effects on organisms. Goals: The aim of our study was to assess effects of both Cr III and Cr VI on the rotifer Lecane papuana (Murray, 1913) by determining how these forms affect the demographic parameters of survival (l x ) and fecundity (mx ). Methods: we performed 48-h acute and 5-d chronic toxicity tests on both forms of chromium. In addition, we determined the bioconcentration factor and metal body burden after 24-h exposure to Cr III and Cr VI. According to their respective LC50 values our results indicate that Cr III was less toxic than Cr VI (Cr III = 2.613 mg/L; Cr VI = 0.177 mg/L). Results: Intrinsic growth rate was significantly affected by Cr III, while Cr VI caused no significant changes, but only at 0.0885 mg/L, a concentration representing 0.5 times of its LC50 value. Although Cr III was not as toxic as Cr VI, our bioconcentration experiments demonstrated that L. papuana accumulated more Cr III than Cr VI and did so at concentrations of environmental concern.
Downloads
References
Aharchaou, I., M. Rosabal., F. Liu., E. Battaglia., D. A. L. Vignati & C. Fortin. 2017. Bioaccumulation and subcellular partitioning of Cr(III) and Cr(- VI) in the freshwater green alga Chlamydomonas reinhardtii. Aquatic Toxicology 182: 49-57. DOI: 10.1016/j.aquatox.2016.11.004
Albert, L.A. 1997. Cromo. Introducción a la toxicología ambiental, 46- 227.
Arnot, J. A. & F.A. Gobas. 2011. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environmental Reviews 14 (4): 257-297. DOI: 10.1139/a06-005
Arzate-Cárdenas, M. A. & F. Martínez-Jerónimo. 2011. Age-altered susceptibility in hexavalent chromium-exposed Daphnia schodleri (Anomopoda: Daphniidae): Integrated Biomarker Response implementation. Aquatic Toxicology 105 (3): 528-534. DOI: 10.1016/j. aquatox.2011.08.006
ATSDR (Agency for Toxic Substances and Disease Registry). 2012. Toxicological Profile for Chromium. Public Health Service, US Department of Health and Human Services. Available online at: https://www.atsdr. cdc.gov/toxprofiles/tp7.pdf (downloaded: May 09, 2022)
Australian Government. 2011. National Water Quality Management Strategy. Australian Drinking Water Guidelines 6. Available online at: https://www.nhmrc.gov.au/sites/default/files/documents/reports/ aust-drinking-water-guidelines.pdf (Downloaded May 09, 2022)
Bielicka, A., I. A. Bojanowska & A. Wiśniewski. 2005. Two faces of chromiumpollutant and bioelement. Polish Journal of Environmental Studies 14 (1): 5-10.
CCME (Canadian Council of Ministers of the Environment). 1999. Canadian water quality guidelines for the protection of aquatic life: chromium - Hexavalent chromium and trivalent chromium. In: Canadian environmental Quality Guidelines, 1999. Canadian Council of Ministers of the Environment, Winnipeg. ISBN 1-896997-34-1. Available online at: http://ceqg-rcqe.ccme.ca/download/en/165 (Downloaded May 09, 2022)
Chatterjee, N. & Z. Luo. 2010. Cr-(III)-organic compounds treatment causes genotoxicity and changes in DNA and protein level in Saccharomyces cerevisiae. Ecotoxicology, 19(4): 593-603. DOI: 10.1007/ s10646-009-0420-4
Dayan, A. D. & A. J. Paine. 2001. Mechanisms of chromium toxicity, carcinogenicity and allergenicity: Review of the literature from 1985 to 2000. Human & Experimental Toxicology 20 (9): 439-451. DOI: 10.1191/096032701682693062
De Manuel, J. 1994. Taxonomic and zoogeographic considerations on Lecanidae (Rotifera: Monogononta) of the Balearic archipelago, with description of a new species, Lecane margalefi n.sp. Hydrobiologia 288 (2): 97-105. DOI: 10.1007/BF00007129
Di Bona, K. R., S. Love., N. R. Rhodes., D. McAdory., S.H. Sinha., N. Kern., J. Kent., J. Strickland., A. Wilson., J. Beaird., J. Ramage., J. Rasco & J. B. Vincent. 2011. Chromium is not an essential trace element for mammals: Effects of a “low-chromium” diet. Journal of Biological Inorganic Chemistry 16 (3): 381-390. DOI: 10.1007/s00775-010- 0734-y
DOF (Diario Oficial de la Federación). 1995. Norma Oficial Mexicana NOM-117-SSA1-1994. Bienes y servicios. Método de prueba para la determinación de cadmio, arsénico, plomo, estaño, cobre, fierro, zinc y mercurio en alimentos, agua potable y agua purificada por espectrometría de absorción atómica. Available online at: https://www.dof.gob.mx/nota_detalle.php?codigo=4879610&fecha=16/08/1995#gsc.tab=0. (Downloaded October 4, 2023)
DOF (Diario Oficial de la Federación). 2022. Norma Oficial Mexicana NOM-001-SEMARNAT-2021. Que establece los límites permisibles de contaminantes en las descargas de aguas residuales en cuerpos receptores propiedad de la nación. Available online at:
Ercal, N., H. Gurer-Orhan & N. Aykin-Burns. 2001. Toxic Metals and Oxidative Stress Part I: Mechanisms Involved in Metal-induced Oxidative Damage. Current Topics in Medicinal Chemistry, 1(6): 529-539. DOI: 10.2174/1568026013394831
Fendorf, S. E. 1995. Surface reactions of chromium in soils and waters. Geoderma 67 (1): 55-71. DOI: 10.1016/0016-7061(94)00062-F
Feng, M., H. Yin., H. Peng., G. Lu., Z. Liu & Z. Dang. 2018. ITRAQ-based proteomic profiling of Pycnoporus sanguineus in response to co-existed tetrabromobisphenol A (TBBPA) and hexavalent chromium. Environmental Pollution, 242: 1758-1767. DOI: 10.1016/j. envpol.2018.07.093
Fiałkowska, E. & A. Pajdak-Stós, A. 2008. The role of Lecane rotifers in activated sludge bulking control. Water Research 42 (10): 2483-2490. DOI: 10.1016/j.watres.2008.02.001
Gagneten, A. M. & A. Imhof. 2009. Chromium (Cr) accumulation in the freshwater crab, Zilchiopsis collastinensis. Journal of Environmental Biology 30 (3): 345-348.
Gagneten, A. M., R. R. Plá., L. Regaldo & J. C. Paggi. 2009. Assessment of Bioconcentration Factor of Chromium by Instrumental Neutron Activation Analysis in Argyrodiaptomus falcifer Daday, a Subtropical Freshwater Copepod. Water, Air, and Soil Pollution 204 (1): 133-138. DOI: 10.1007/s11270-009-0032-x
Garza-León, C. V., M. A. Arzate-Cárdenas & R. Rico-Martínez. 2017. Toxicity evaluation of cypermethrin, glyphosate, and malathion, on two indigenous zooplanktonic species. Environmental Science and Pollution Research 24 (22): 18123-18134. DOI: 10.1007/s11356- 017-9454-y
Government of Canada, Health Canada. 2018. Guidelines for Canadian Drinking Water Quality: Guideline Technical Document – Chromium. Available online at: https://www.canada.ca/en/health-canada/services/publications/healthy-living/guidelines-canadian-drinking-water-quality-guideline-technical-document-chromium-profile.html (Downloaded May 09, 2022)
Gutierrez, M. F., A. M. Gagneten & J. C. Paggi. 2010. Copper and Chromium Alter Life Cycle Variables and the Equiproportional Development of the Freshwater Copepod Notodiaptomus conifer (SARS). Water, Air, & Soil Pollution 213 (1): 275-286. DOI: 10.1007/s11270-010- 0383-3
HBM4EU (European Environment Agency and European Commission). 2020. Science and policy for healthy future. Chromium VI. Legislative status in the European Union. Available online at: https://www. hbm4eu.eu/the-substances/chromium-vi/#:~:text=A%20maximum%20value%20of%2050,specifically%20for%20Cr(VI). (Downloaded May 09, 2022)
He, Z., J. Shentu., X. Yang., V. C. Baligar., T. Zhang & P. J. Stoffella. 2015. Heavy Metal Contamination of Soils: Sources, Indicators and Assessment. Journal of Environmental Indicators, 9:17-18.
Hermens, J., H. Canton., N. Steyger & R. Wegman. 1984. Joint effects of a mixture of 14 chemicals on mortality and inhibition of reproduction of Daphnia magna. Aquatic Toxicology 5 (4): 315-322. DOI: 10.1016/0166-445X(84)90012-2
Hernández-Flores, S., G. E. Santos-Medrano., I. Rubio-Franchini., & R. Rico-Martínez. 2020. Evaluation of bioconcentration and toxicity of five metals in the freshwater rotifer Euchlanis dilatata Ehrenberg, 1832. Environmental Science and Pollution Research 27 (12): 14058-14069. DOI: 10.1007/s11356-020-07958-3
Hernández-Ruiz, E., J. Alvarado-Flores., I. Rubio-Franchini., J. Ventura-Juárez & R. Rico-Martínez. 2016. Adverse effects and bioconcentration of chromium in two freshwater rotifer species. Chemosphere 158: 107-115. DOI: 10.1016/j.chemosphere.2016.05.067
Jacobs, J. A. & S. M. Testa. 2004. Overview of Chromium(VI) in the Environment: Background and History. In: Guertin J., J. A. Jacobs & C. P. Avakian (Eds.). Chromium(VI) Handbook. 1st ed. CRC Press. Boca Raton, Florida, pp. 1-22.
Joadder, M. A. R. 2014. Seasonal Occurence of Food and Feeding Habit of Labeo bata (Hamilton) (Cypriniformes: Cyprinidae). Journal of Science Foundation 12 (1): 7-15. DOI: 10.3329/jsf.v12i1.23458
Keppeler, E. C., S. L. S. de Souza., E. S. da Silva., R. O. P. Serrano., R. O. P., R. M. de Souza., I. Í. da Silva Dantas., J. F. Silvério & F. P. Madeira. 2010. Rotifera, Eurotatoria, Lecanidae, Lecane monostyla (Daday, 1897): new occurrence for state of Acre. Ensaios e Ciência: Ciências Biológicas, Agrárias e da Saúde 14(1), 9-14.
Klimek, B., E. Fiałkowska., W. Kocerba-Soroka., J. Fyda., M. Sobczyk & A. Pajdak-Stós. 2013. The Toxicity of Selected Trace Metals to Lecane inermis Rotifers Isolated from Activated Sludge. Bulletin of Environmental Contamination and Toxicology 91 (3): 330-333. DOI: 10.1007/s00128-013-1062-z
Martínez-Jerónimo, F., L. Martínez-Jerónimo & F. Espinosa-Chávez. 2006. Effect of culture conditions and mother’s age on the sensitivity of Daphnia magna Straus 1820 (Cladocera) neonates to hexavalent chromium. Ecotoxicology 15 (3): 259-266. DOI: 10.1007/s10646- 006-0057-5
Martínez-Jerónimo, F., J. Rodríguez-Estrada & L. Martínez-Jerónimo. 2008. Daphnia exilis Herrick, 1895 (Crustacea: Cladocera): A zooplankter potentially usable as test organism for acute toxicity tests in tropical and subtropical environments. Revista Internacional de Contaminación Ambiental 24 (4): 153-159. DOI: S0188-49992008000400001
Muggelberg, L. L., K. E. Huff Hartz., S. A. Nutile., A. D. Harwood., J. R. Heim., A. P. Derby., D. P. Weston & M. J. Lydy. 2017. Do pyrethroid-resistant Hyalella azteca have greater bioaccumulation potential compared to non-resistant populations? Implications for bioaccumulation in fish. Environmental Pollution 220: 375-382. DOI: 10.1016/j.envpol.2016.09.073
Norseth, T. 1986. The carcinogenicity of chromium and its salts. British Journal of Industrial Medicine, 43(10): 649-651. DOI: 10.1136/ oem.43.10.649
Norwood, W. P., U. Borgmann & D. G. Dixon. 2006. Saturation models of arsenic, cobalt, chromium and manganese bioaccumulation by Hyalella azteca. Environmental Pollution 143 (3): 519-528. DOI: 10.1016/j.envpol.2005.11.041
Pereira, Y., G. Lagniel., E. Godat., P. Baudouin-Cornu., C. Junot & J. Labarre. 2008. Chromate Causes Sulfur Starvation in Yeast. Toxicological Sciences, 106(2): 400-412. DOI: 10.1093/toxsci/kfn193
Pérez-Legaspi, I. A. & R. Rico-Martínez. 2001. Acute toxicity tests on three species of the genus Lecane (Rotifera: Monogononta). Hydrobiologia, 446 (1): 375-381. DOI: 10.1023/A:1017531712808
Rainbow, P. S. 2007. Trace metal bioaccumulation: Models, metabolic availability and toxicity. Environment International 33 (4): 576-582. DOI: 10.1016/j.envint.2006.05.007
Rajkumar, J. S. I. & S. Tennyson. 2013. Acute effects of chromium on bioaccumulation and biochemical profile of Mugil cephalus (Linnaeus, 1758). International Journal of Advanced Life Sciences (IJALS) 6 (2), 107-115. Available online at: https://www.researchgate.net/ profile/Samuel-Tennyson/publication/341978211_Acute_effects_ of_chromium_on_bioaccumulation_and_biochemical/links/5edbc65e299bf1c67d4ab9e3/Acute-effects-of-chromium-on-bioaccumulation-and-biochemical.pdf. (Downloaded May, 2022)
Rivera-Dávila, O. L., G. Sánchez-Martínez & R. Rico-Martínez. 2021. Ecotoxicity of pesticides and semiochemicals used for control and prevention of conifer bark beetle (Dendroctonus spp.) outbreaks. Chemosphere 263: 128375. DOI: 10.1016/j.chemosphere.2020.128375
Rudolf, E. & M. Červinka. 2006. The role of intracellular zinc in chromium (VI)-induced oxidative stress, DNA damage and apoptosis. Chemico-Biological Interactions 162 (3): 212-227. DOI: 10.1016/j. cbi.2006.06.005
Sanyal, T., A. Kaviraj & S. Saha. 2017. Toxicity and bioaccumulation of chromium in some freshwater fish. Human and Ecological Risk Assessment: An International Journal 23 (7): 1655-1667. DOI: 10.1080/10807039.2017.1336425
Sarma, S. S. S., F. Martínez-Jerónimo., T. Ramírez-Pérez & S. Nandini. 2006. Effect of Cadmium and Chromium Toxicity on the Demography and Population Growth of Brachionus calyciflorus and Brachionus patulus (Rotifera). Journal of Environmental Science and Health, Part A 41 (4): 543-558. DOI: 10.1080/10934520600564311
Saucedo-Ríos, S., G. E. Santos-Medrano & R. Rico-Martínez. 2017. Life table analysis reveals variation in thermal tolerance among three species of the Lecane genus (Rotifera: Monogononta). Annals of Limnology - International Journal of Limnology 53, 253-259. DOI: 10.1051/ limn/2017009
Segers, H. 1996. The biogeography of littoral Lecane Rotifera. Hydrobiologia 323 (3): 169-197. DOI: 10.1007/BF00007845
Segers, H. 2007. Annotated checklist of the rotifers (Phylum Rotifera), with notes on nomenclature, taxonomy and distribution. Zootaxa 1564 (1): 1-104. DOI: 10.11646/zootaxa.1564.1.1
Snell, T. W. & B. D. Moffat. 1992. A 2-d Life cycle test with the rotifer Brachionus calyciflorus. Environmental Toxicology and Chemistry 11 (9): 1249-1257. DOI: 10.1002/etc.5620110905 USEPA (United States Environmental Protection Agency). 2002. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. EPA-821-R-02-012. Available online at: https://www.epa.gov/sites/production/files/2015-08/ documents/acute-freshwater-and-marine-wet-manual_2002.pdf (Downloaded: May, 2022)
USEPA (United States Environmental Protection Agency). 2008. Safe drinking water act. Chromium in drinking water. Available online at: https:// www.epa.gov/sdwa/chromium-drinking-water#:~:text=EPA%20 has%20a%20drinking%20water,to%20test%20for%20total%20 chromium. (Downloaded May, 2022)
Van Wezel, A. P., D. T. H. M. Sijm., W. Seinen & A. Opperhuizen. 1995. Use of lethal body burdens to indicate species differences in susceptibility to narcotic toxicants. Chemosphere 31 (5): 3201-3209. DOI: 10.1016/0045-6535(95)00181-7
Velandia Guaque, L. M. & Y. S. Montañez Cardozo. 2010. Determinación de la concentración letal media (Cl50-48) del plomo y cromo hexavalente mediante bioensayos de toxicidad acuática utilizando Daphnia pulex. Available online at: https://ciencia.lasalle.edu.co/cgi/ viewcontent.cgi?article=1037&context=ing_ambiental_sanitaria. (Downloaded May, 2022)
Vincent, J. B. 2017. New Evidence against Chromium as an Essential Trace Element. The Journal of Nutrition 147 (12): 2212-2219. DOI: 10.3945/jn.117.255901
Wallace, R.L., T. W. Snell & H. A. Smith. 2015. Phylum Rotifera. In Thorp, J. H. & D. C. Rogers (eds) Thorp and Covich’s Freshwater Invertebrates. vol I: Ecology and General Biology. Elsevier, Waltham, MA, 225-271.
Wong, C. K., & A. P. Pak. 2004. Acute and Subchronic Toxicity of the Heavy Metals Copper, Chromium, Nickel, and Zinc, Individually and in Mixture, to the Freshwater Copepod Mesocyclops pehpeiensis. Bulletin of Environmental Contamination and Toxicology 73 (1): 190-196. DOI: 10.1007/s00128-004-0412-2
Yuan, C., M. Li., Y. Zheng., Y. Zhou., F. Wu & Z. Wang. 2017. Accumulation and detoxification dynamics of Chromium and antioxidant responses in juvenile rare minnow, Gobiocypris rarus. Aquatic Toxicology 190: 174-180. DOI: 10.1016/j.aquatox.2017.07.005
Downloads
Published
How to Cite
Issue
Section
License
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, HIDROBIOLÓGICA reconoce y respeta el derecho moral de los autores, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Publicar en la revista HIDROBIOLÓGICA tiene un costo de recuperación de $500 pesos mexicanos por página en blanco y negro (aproximadamente 29 dólares americanos) y $1000 pesos por página a color (aproximadamente 58 dólares americanos).
Todos los textos publicados por HIDROBIOLÓGICA sin excepción se distribuyen amparados bajo la licencia Creative Commons 4.0Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en HIDROBIOLÓGICA (por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en HIDROBIOLÓGICA.
Para todo lo anterior, el o los autor(es) deben remitir el formato de Carta-Cesión de la Propiedad de los Derechos de la primera publicación debidamente requisitado y firmado por el autor(es). Este formato se puede enviar por correo electrónico en archivo pdf al correo: enlacerebvistahidrobiológica@gmail.com; rehb@xanum.uam.mx (Carta-Cesión de Propiedad de Derechos de Autor).
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.