Allometric growth and reduced pectoral fin regeneration rate in terrestrialized Polypterus senegalus
DOI:
https://doi.org/10.24275/uam/izt/dcbs/hidro/2020v29n3/CuervoKeywords:
Polypterus, fin, regeneration, allometry, heterochronyAbstract
Background: Polypterus condense unique characteristics that astonished and confused naturalists since 1802 when Geoffroy St. Hilaire first described and named this fish. Polypterus was seen in that epoch as primitive amphibians or a link between fishes and amphibians. Polypteriformes have the ability to regenerate its pectoral fins with the accuracy only seen in urodel amphibians and have the capacity to breathe air using paired lungs. Goals: We aimed to evaluate how forced land-living condition (i.e., terrestrialization) could affect pectoral girdle bones shape and pectoral fin regeneration in Polypterus senegalus. Methods: Polypterus were reared in semi-terrestrial conditions for nine months and iterative amputations of pectoral fins were performed every two months. The bone elements of the shoulder girdle and pectoral fins were measured and compared between terrestrialized organisms and controls. Results: Terrestrialization produces notable morphological alterations, including general reduced body growth and big eyes, serial amputations under this condition decreases the number of radial bones of pectoral fins. Conclusions: We propose allometry and heterochrony as reliable concepts to explain the modifications generated by terrestrialization. Also, we suggest that anatomical alterations in early tetrapod ancestors were an unavoidable consequence of the influence of environment on general metabolic processes associated with growth.
Downloads
References
Bartsch, P., Gemballa, S., and Piotrowski, T. (1997). The Embryonic and Larval Development of Polypterus senegalus Cuvier, 1829: its Staging with Reference to External and Skeletal Features, Behaviour and Locomotory Habits. Acta Zoologica. 78, 309328. doi: 10.1111/j.1463-6395.1997.tb01014.x
Noack, K., Zardoya, R., and Meyer, A. (1996). The complete mitochondrial DNA sequence of the bichir (Polypterus ornatipinnis), a basal ray-finned fish: ancient establishment of the consensus vertebrate gene order. Genetics. 144, 11651180.
Graham, J. B., Wegner, N. C., Miller, L. A., Jew, C. J., Lai. N. C., Berquist, R. M., Frank, L. R., and Long, J. A. (2014) Spiracular air breathing in polypterid fishes and its implications for aerial respiration in stem tetrapods. Nature Communications. 5, 3022. doi.org/10.1038/ncomms4022
Cuervo, R., Hernández-Martínez, R., Chimal-Monroy, J., Merchant-Larios, H., and Covarrubias, L. (2012). Full regeneration of the tribasal Polypterus fin. Proceedings of the National Academy of Sciences. 109, 38383843. doi: 10.1073/pnas.1006619109
Coates, M. I., Jeffery, J. E., and Rut, M. (2002). Fins to limbs: what the fossils say. Evolution and Development. 4, 390401. doi.org/10.1073/pnas.1006619109
Conant, E. B. (1973). Regeneration in the African lungfish, Protopterus. 3. Regeneration during fasting and estivation. Biological Bulletin. 144, 248261. doi.org/10.2307/1540006
Fröbisch, N. B., Bickelmann, C., Olori, J.C., and Witzmann, F. (2015). Deep-time evolution of regeneration and preaxial polarity in tetrapod limb development. Nature. 527, 231234. doi.org/10.1038/nature15397
Standen, E. M., Du, T. Y., and Larsson, H. C. E. (2014). Developmental plasticity and the origin of tetrapods. Nature. 513, 5458. doi.org/10.1038/nature13708
Hall, B. K. (2006). Fins into Limbs: Evolution, Development, and Transformation. University of Chicago Press. doi.org/10.1007/s10914-007-9049-3
Holden, M. J. (1971). Significance of sexual dimorphism of the anal fin of Polypteridae. Nature. 232, 135136. doi.org/10.1038/232135b0
Spallanzani, L. (1768). Prodromo di un'opera da imprimersi sopra le riproduzioni animali (Giovanni Montanari).
Yun, M. H., Davaapil, H., and Brockes, J. P. (2015). Recurrent turnover of senescent cells during regeneration of a complex structure. eLife. 4: e05505. doi.org/10.7554/eLife.05505.015
Dahl, T. W., Hammarlund, E. U., Anbar, A. D., Bond, D. P. G., Gill, B. C., Gordon, G. W., Knoll, A. H., Nielsen, A. T., Schovsbo, N. H., and Canfield, D. E. (2010). Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proceedings of the National Academy of Sciences. 107, 1791117915. doi.org/10.1073/pnas.1011287107
Zhu, M., & Ahlberg, P. E. (2004). The origin of the internal nostril of tetrapods. Nature. 432, 9497. doi.org/10.1038/nature02843
Lee, M. S. Y., Cau, A., Naish, D., and Dyke, G. J. (2014). Dinosaur evolution. Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science. 345, 562566. doi.org/10.1126/science.1252243
Coates, M. I. (1994). The origin of vertebrate limbs. Development. Supp. 169-180.
Yano, T., Abe, G., Yokoyama, H., Kawakami, K., and Tamura, K. (2012). Mechanism of pectoral fin outgrowth in zebrafish development. Development. 139, 29162925. doi.org/0.1242/dev.075572
Gould, S. J., & Vrba, E. S. (1982). Exaptation-a missing term in the science of form. Paleobiology. 8, 415. doi.org/10.1017/S0094837300004310
Klingenberg, C. P. (1998). Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biological Reviews of the Cambridge Philosophical Society. 73, 79123.
Gould, S. J. (2000). Of coiled oysters and big brains: how to rescue the terminology of heterochrony, now gone astray. Evolution and Development. 2, 241248. doi.org/0.1046/j.1525-142x.2000.00067.x
Johnels, A. G. (1957). The mode of terrestrial locomotion in Clarias. Oikos. 8, 122129. doi.org/10.2307/3564996
King, H. M., Shubin, N. H., Coates, M. I., and Hale, M. E. (2011). Behavioral evidence for the evolution of walking and bounding before terrestriality in sarcopterygian fishes. Proceedings of the National Academy of Sciences. 108, 2114621151. doi.org/10.1073/pnas.1118669109
Downloads
Published
How to Cite
Issue
Section
License
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, HIDROBIOLÓGICA reconoce y respeta el derecho moral de los autores, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Publicar en la revista HIDROBIOLÓGICA tiene un costo de recuperación de $500 pesos mexicanos por página en blanco y negro (aproximadamente 29 dólares americanos) y $1000 pesos por página a color (aproximadamente 58 dólares americanos).
Todos los textos publicados por HIDROBIOLÓGICA sin excepción se distribuyen amparados bajo la licencia Creative Commons 4.0Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en HIDROBIOLÓGICA (por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en HIDROBIOLÓGICA.
Para todo lo anterior, el o los autor(es) deben remitir el formato de Carta-Cesión de la Propiedad de los Derechos de la primera publicación debidamente requisitado y firmado por el autor(es). Este formato se puede enviar por correo electrónico en archivo pdf al correo: enlacerebvistahidrobiológica@gmail.com; rehb@xanum.uam.mx (Carta-Cesión de Propiedad de Derechos de Autor).
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.