Evaluation of Mannan oligosaccharides (MOS) in balanced diets for tropical gar juveniles (Atractosteus tropicus)
DOI:
https://doi.org/10.24275/uam/izt/dcbs/hidro/2018v28n3/PenaKeywords:
Atractosteus tropicus, digestive enzymes, growth, mannan oligosaccharides, prebioticsAbstract
Background: Prebiotics are polysaccharides that cannot be digested by the host; however, they generate benefits by stimulating the activity of beneficial microorganisms in the digestive system, which can maximize weight gain, feed conversion, and stimulate the immune response. Mannan oligosaccharides (MOS) have been evaluated in several fish species of commercial importance. Goals: Determine inclusion effects of different MOS levels in balanced diets for juveniles of Atractosteus tropicus on the growth, productive parameters, survival, somatic indexes, and activity of digestive enzymes. Methods: Six experimental diets including MOS (0.0, 0.2, 0.4, 0.6, and 0.8%) and a trout control diet (DC) were designed, manufactured, and evaluated in triplicate during 62 days. A hundred and eighty juveniles (5.11 ± 0.08 g) were distributed in a recirculation system with 18 tanks of 70 L with a flow of 10 L min-1. Results: The 0.2% MOS diet produced the highest values in weight gained (WG), specific growth rate (SGR), and protein efficiency rate (PER) and the lowest value in feed conversion rate (FCR). Survival in all treatments was greater than 96%. The hepatosomatic index was higher for the 0.4% treatment, while the viscerosomatic index was higher for the 0.4% and 0.6% treatments. All the enzymatic activities (acid protease, alkaline protease, trypsin, chymotrypsin, leucine aminopeptidase, carboxypeptidases, lipases, α-amylase, acid phosphatases, and alkaline phosphatases) showed significant differences by the inclusion of MOS in the diet. Conclusions: Supplementation of 0.2% MOS in diets for juveniles of A. tropicus, generates benefits in growth and productive performance. The inclusion of MOS in diets for juveniles of A. tropicus modifies somatic indices and the activity of digestive enzymes of juveniles.
Downloads
References
Akhter, N., B. Wu, A. M. Memon& M. Mohsin. 2015. Probiotics and prebio¬tics associated with aquaculture: a review. Fish & Shellfish Immu¬nology 45: 733-741.
Álvarez-González, C. A., R. Civera-Cerecedo, J. L. Ortiz-Galindo, S. Dumas, M. Moreno-Legorreta& T. Grayeb-Del Alamo. 2001. Effect of dietary protein level on growth and body composition of juvenile spotted sand bass, Paralabrax maculatofasciatus, fed practical diets. Aqua¬culture 194: 151-159.
Anguiano, M., C. Pohlenz, A. Buentello & D.M. Gatlin. 2013. The effects of prebiotics on the digestive enzymes and gut histomorphology of red drum (Sciaenops ocellatus) and hybrid striped bass (Morone chrysops x M. saxatilis). British Journal of Nutrition 109 (4): 623- 629.
Anson, M. L. 1938. The estimation of pepsin, trypsin, papain and cathep¬sin with hemoglobin. The Journal of General Physiology 22: 79-89.
Bradford, M. M. 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of pro¬tein-dye binding. Analytical Biochemistry 72: 248-254.
Bergmeyer, H. U. 1974. Phosphatases: Methods of enzymatic analysis, Vol. 2. Academic Press, New York, pp. 1196-1201.
Carbone, D& C. Faggio. 2016. Importance of prebiotics in aquaculture as immunostimulants. Effects on immune system of Sparus aurata and Dicentrarchus labrax. Fish and Shellfish Immunology 54: 172- 178. DOI: 10.1016/j.fsi.2016.04.011
Del Mar, E. G., C. Largman, J. Brodrick & M. Geokas. 1979. A sensitive new substrate for chymotrypsin. Analytical Biochemistry 99 (3): 16-320.
Dimitroglou, A., D. L. Merrifield, P. Spring, J. Sweetman, R. Moate & S. J. Davies. 2010. Effects of mannan oligosaccharide (MOS) supplemen¬tation on growth performance, feed utilisation, intestinal histology and gut microbiota of gilthead sea bream (Sparus aurata). Aquacul¬ture 300: 182-188.
Erlanger, B., N. Kokowsky & W. Cohen. 1961. The preparation and pro¬perties of two new chromogenic substrates of trypsin. Archives of Biochemistry and Biophysics 95: 271-278.
Frías-Quintana, C. A., C. A. Álvarez-González & G. Márquez-Couturier. 2010. Diseño de microdietas para el larvicultivo de pejelagarto Atractos¬teus tropicus, Gill 1863. Universidad y Ciencia 26 (3): 265-282.
Folk, J. & E. Schirmer. 1963. The porcine pancreatic carboxypeptidase A System. I. Three forms of the active enzyme. The Journal of Biolo¬gical Chemistry 238: 38-84.
Genc, M. A., E. Yilmaz, E. Genc& M. Aktas. 2007. Effects of dietary mannan oligosaccharides (MOS) on growth, body composition, and intestine and liver histology of the hybrid tilapia (Oreochromis niloticus x O. aureus). The Israeli Journal of Aquaculture 59: 10-16.
Gibson, G. R. & M. B Roberfroid. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. Journal of Nutrition 125: 1401-1412.
Guillaume, J., S. Kaushik & P. Bergot. (eds) 2004. Nutrición y alimentación de peces y crustáceos. Mundi-Prensa. 471p.
Gültepe, N, S. Salnur, B. Hoşsu, B. & O. Hisar. 2011. Dietary supplementa¬tion with Mannanoligosaccharides (MOS) from Bio-Mos enhances growth parameters and digestive capacity of gilthead sea bream (Sparus aurata) Aquaculture Nutrition 17: 482-487.
Hoseinifar, S. H., M. A. Esteban, A. Cuesta& Y-Z. Sun. 2015. Prebiotics and fish immune response: a review of current knowledge and future perspectives. Reviews in Fisheries Science & Aquaculture 23: 315- 328.
Mansour, M. R., R. Akrami, S.H. Ghobadi, K. A. Denji, N. Ezatrahimi & A. Gharaei. 2012. Effect of dietary mannan oligosaccharide (MOS) on growth performance, survival, body composition, and some hematological parameters in giant sturgeon juvenile (Huso huso Linnaeus, 1754). Fish Physiology and Biochemestry 38: 829-835. DOI: 10.1007/ s10695-011-9570-4
Maraux, S., D. Louvard & J. Baratti. 1973. The aminopeptidase from hog-intestinal brush border. Acta Biochimica et Biophysica Sinica 321: 282-295.
Momeni-Moghaddam, P., S. Keyvanshokooh, S. Ziaei-Nejad, A. P. Salati & H. Pasha-Zanoosi. 2015. Effects of mannan oligosaccharide supple¬mentation on growth, some immune responses and gut lactic acid bacteria of common carp (Cyprinus carpio) fingerlings. Veterinary Research Forum 6 (3): 239-244.
Polakof, S., S. Panserat, J. L. Soengas, & T. W. Moon. 2012. Glucose meta¬bolism in fish: a review. Journal of Comparative Physiology B 182 (8): 1015-1045. DOI: 10.1007/s00360-012-0658-7
Peterson, B. C., T. C. Bramble & B. B. Manning. 2010. Effects of Bio-Mos on growth and survival of channel catfish challenged with Edwardsie¬lla ictaluri. Journal of the World Aquaculture Society 41: 149-155.
Robyt, J. F. & W. Whelan. 1968. Amylases. In: Radley, J. A. (ed). Starch and its Derivates. Chapman and Hall, England, pp. 430-476.
Talpur, A. D., M. B. Munir, A. Marry & R. Hashim. 2014. Dietary probiotics and prebiotics improved food acceptability, growth performance, haematology and immunological parameters and disease resistan¬ce against Aeromonas hydrophila in snakehead (Channa striata) fingerlings. Aquaculture journal 426-427: 14-20.
Uribe, C., H. Folch, R. Enriquez & G. Morán. 2011. Innate and adaptive immunity in teleost fish: a review. Veterinarni Medicina 56 (10): 486-503.
Versaw, W., S. L. Cuppett, D. D. Winters & L. E. Williams. 1989. An improved colorimetric assay for bacterial lipase in nonfat dry milk. Journal of Food Science 54: 232-254.
Vieirade Azevedo, R., D. K. daSilva-Azevedo, J. M. dos Santos-Júnior, J. C. Fosse-Filho, D. Ricardo de Andrade, L. G. Tavares-Braga& M. V. Vi¬dal-Júnior. 2016. Effects of dietary mannan oligosaccharide on the growth, survival, intestinal morphometry and nonspecific immune response for Siamese fighting fish (Betta splendens Regan, 1910) larvae. Latin American Journal of Aquatic Research 44 (4): 800- 806. DOI: 10.3856/vol44-issue4-fulltext-15
Walter, H. E. 1984. Proteinases: methods with hemoglobin, casein and azocoll as substrates. In: Bergmeyer, H. J. (ed). Methods of Enzyma¬tic Analysis. Vol. V, Verlag Chemie. Weinham, pp. 270-277.
Downloads
Published
How to Cite
Issue
Section
License
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, HIDROBIOLÓGICA reconoce y respeta el derecho moral de los autores, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Publicar en la revista HIDROBIOLÓGICA tiene un costo de recuperación de $500 pesos mexicanos por página en blanco y negro (aproximadamente 29 dólares americanos) y $1000 pesos por página a color (aproximadamente 58 dólares americanos).
Todos los textos publicados por HIDROBIOLÓGICA sin excepción se distribuyen amparados bajo la licencia Creative Commons 4.0Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en HIDROBIOLÓGICA (por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en HIDROBIOLÓGICA.
Para todo lo anterior, el o los autor(es) deben remitir el formato de Carta-Cesión de la Propiedad de los Derechos de la primera publicación debidamente requisitado y firmado por el autor(es). Este formato se puede enviar por correo electrónico en archivo pdf al correo: enlacerebvistahidrobiológica@gmail.com; rehb@xanum.uam.mx (Carta-Cesión de Propiedad de Derechos de Autor).
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.