Efficiency of lectins as immune indicators in juvenile white shrimp, Litopenaeus vannamei (Malacostraca: Penaeidae)
DOI:
https://doi.org/10.24275/uam/izt/dcbs/hidro/2018v28n3/MartinKeywords:
immunostimulants, lectins, Litopenaeus vannamei, monoclonal antibodiesAbstract
Background: Lectins act in plants and animals as recognition units against invasive pathogens, participate by activating the immune system, and function as recognition mediators of immune response in invertebrates. Few studies have evaluated the effect of immunostimulants on the activation of lectins in crustaceans. Goals: To evaluate the lectin concentration in juvenile shrimp treated with commercial and microbial immunostimulants. Methods: Five treatments were added directly to the culture tanks every third day during 12 days: 1) laminarin (0.5 mg ml-1); 2) mix 1 (Bacillus tequilensis and B. licheniformis; 2x106 CFU ml-1, 1:1 proportion); 3) mix 2 (B. endophyticus, strain YC3-B and strain C2-2; 2x106 CFU ml-1, proportion 1:1); 4) Debaryomyces hansenii (1x106 CFU ml-1); 5) control (without immunostimulants). At day 12, after the last treatments were added, samples of hemolymph were extracted from shrimp at 24, 48, and 72 h to determine lectin concentration by the ELISA method, using monoclonal antibodies against Macrobrachium rosenbergii lectin (MrL). Results: Significant differences (p <0.05) in the lectin concentration were found in shrimp groups treated with laminarin at 24 h after the last exposure to the treatment, followed by mix 1 and mix 2 at 72 h after exposure to the treatments. At 48 h, treatments did not register significant differences (p >0.05) when compared to the control groups. Shrimp exposed to D. hansenii did not show significant increase in lectin concentration compared to the control groups. Conclusions: This study showed that lectin concentration may be increased in plasma of juvenile shrimp and used as a bioindicator tool of immunostimulation.
Downloads
References
Agundis, C., A. Pereyra, R. Zenteno, C. Brassart, C. Sierra, L. Vazquez& E. Zenteno. 2000. Cuantification of lectin in freshwater prawn (Macro¬brachium rosembergii) hemolymph by ELISA. 2000. Comparative Biochemistry and Physiology Part B 127: 165-172. DOI:10.1016/ S0305-0491(00)00248-0
Alpuche, J., C. Agundis, C. Solórzano & A. PereyraA. 2005. Lectina en L. Se¬tiferus: una alternativa en cultivo ante enfermedades que afectan al cultivo de camarones. REDVET 12: 1-12.
Alpuche, J., A. Pereyra, C. Agundis, C. Rosas, C. Pascual, M. C. Slomianny, L. Vázquez& E. Zenteno. 2005. Purification and characterization of a lectin from the White shrimp Litopenaeus setiferus (Crustacea de¬capoda) hemolymph. Biochimica et Biophysica Acta 1724: 86-93. DOI:10.1016/j.bbagen.2005.04.014
Amparyup, P., J. Sutthangkul, W. Charoensapsri & A. Tassanakajon. 2016. Pattern recognition protein binds to lipopolysaccharide and β-1,3-glucan and activates shrimp prophenoloxidase system. The Journal of Biological Chemistry 291 (20): 10949. DOI:10.1074/jbc. M111.294744
Bae, S. H., B. R. Kim, B. J. Kang, N. Tsutsui, T. Okutsu, J. Shinji, I. K. Jang, C. H. Han & M. N. Wilder. 2012. Molecular cloning of prophenoloxidase and the effects of dietary β-glucan and rutin on immune response in hemocytes of the fleshy shrimp, Fenneropenaeus chinensis. Fish & Shellfish Immunology 33: 597-604. DOI:10.1016/j.fsi.2012.06.034
Bollag, D. M., M. D. Rozycki & S. J. Edelsteein. 1996. Protein methods. Wiley-Liss. 432 p.
Bradford, M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Pro¬tein-Dye Binding. Analytical Biochemistry 72:248-254.
Campa-Córdova, A. I., N. Y. Hernández-Saavedra, R. De Philippis & F. Ascencio. 2002. Generation of superoxide anion and SOD activity in haemo¬cytes and muscle of American white shrimp (Litopenaeus vanna¬mei) as a response to β-glucan and sulphated polysaccharide. Fish & Shellfish Immunology 12: 353-366. DOI:10.1006/fsim.2001.0377
Campa-Córdova, A. I., N. Y. Hernández-Saavedra, G. Aguirre-Guzmán & F. As¬cencio. 2005. Respuesta inmunomoduladora de la superóxido dis¬mutasa en juveniles de camarón blanco (Litopenaeus vannamei) expuestos a inmunoestimulantes. Ciencias Marinas 31: 661-669.
Chai, P. C., X. L. Song, G. F. Chen, H. Xu & J. Huang. 2016. Dietary supple¬mentation of probiotic Bacillus PC465 isolated from the gut of Fen¬neropenaeus chinensis improves the health status and resistance of Litopenaeus vannamei against white spot syndrome virus. Fish & Shellfish Immunology 54: 602-611. DOI: 10.1016/j.fsi.2016.05.011
Chen, Y. Y., J. C. Chen, Y. H. Kuo, Y. C. Lin, Y. H. Chang, H. Y. Gong & C. L. Huang. 2016. Lipopolysaccharide and β-1,3-glucan-binding protein (LGBP) bind to seaweed polysaccharides and activate the prophe¬noloxidase system in white shrimp Litopenaeus vannamei. Develo¬pmental & Comparative Immunology 55: 144-151. DOI:10.1016/j. dci.2015.10.023
Denis, M., K. Thayappan, S. M. Ramasamy & A. Munusamy. 2016. Lectin in innate immunity of crustacea. Austin Biology 1 (1): 1-7.
Itami, T. 2002. Promising strategies against WSSV for kuruma shrimp in Japan. Asian Aquaculture 24: 9-10.
Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
Li, H., Y. Chen, M. Li, S. Wang, H. Zuo, X. Xu, S. Weng, J. He & C. Li. 2015. A C-type lectin (LvCTL4) from Litopenaeus vannamei is a downs¬tream molecule of the NF-κB signaling pathway and participates in antibacterial immune response. Fish & Shellfish Immunology 43: 257-263. DOI:10.1016/fsi.2014.12.024
Li, F. & J. Xiang. 2013. Signaling pathways regulating innate immune responses in shrimp. Fish & Shellfish Immunology 34: 973-980. DOI:10.1026/fsi.2012.08.023
Li, J., B. Tan, K. Mai. 2009. Dietary probiotic Bacillus OJ and isomal¬tooligosaccharides influence the intestine microbial populations, immune responses and resistance to white spot syndrome virus in shrimp (Litopenaeus vannamei). Aquaculture 291: 35-40.
Li, M., C. Li, C. Ma, H. Li, H. Zuo, S. Weng, X. Chen, D. Zeng, J. He & X. Xu. 2014. Identification of a C-type lectin with antiviral and antibacte¬rial activity from pacific white shrimp Litopenaeus vannamei. Deve¬lopmental & Comparative Immunology 46: 231-240. DOI:10.1016/j. dci.2014.04.014
Lu, J., Z. Yu, C. Mu, R. Li, W. Song & C. Wang. 2017. Characterization and functional analysis of a novel C-type lectin from the swimming crab Portunus trituberculatus. Fish & Shellfish Immunology 64: 185-192. DOI:10.1016/j.fsi.2017.03.013
Luis-Villaseñor, I., M. E. Macías-Rodríguez, B. Gómez-Gil, F. Ascencio-Valle & A. I. Campa-Córdova. 2011. Beneficial effects of four Bacillus strains on the larval cultivation of Litopenaeus vannamei. Aquaculture 321: 136-144. DOI:10.1016/j.aquaculture.2011.08.036
Luis-Villaseñor, I., T. Castellanos-Cervantes, B. Gómez-Gil, A. E. Carrillo-Gar¬cía, A. I. Campa-Córdova& F. Ascencio. 2013. Probiotics in the intestinal tract of juvenile whiteleg shrimp Litopenaeus vannamei: modula¬tion of the bacterial community. World Journal of Microbiology and Biotechnology 29: 257-265. DOI:10.1007/s11274-012-1177-0
Luo, Z., J. Zhang, F. Li, X. Zhang, C. Liu & J. Xiang. 2011. Identification of a novel C-type lectin from the shrimp Litopenaeus vannamei and its role in defense against pathogens infection. Chinese Journal of Oceanography and Limnology 29 (5): 942-951. DOI: 10.1007/ s00343-011-0249-6
Pacheco-Marges, M. R., A. I. Campa-Córdova, G. Aguirre-Guzmán, A. Luna-Gon¬zález, M. A. Guzmán-Murillo & F. Ascencio. 2012. Efecto de Debar¬yomyces hansenii en la respuesta antioxidante de juveniles de camarón blanco Litopenaeus vannamei. Revista MVZ Córdoba 17 (1): 2820-2826.
Pan, M. V., R. F. M. Traifalgar, A. E. Jr. Serrano & V. L. Jr. Corre. 2015. Immunomodulatory and growth promoting effects of peptidoglycan supplementation in Black tiger shrimp Penaeus monodon Fabricius 1798. Asian Fisheries Science 28: 60-71.
Pais, R., R. Khushiramani, I. Karunasagar & I. Karunasagar. 2008. Effect of immunostimulants on the haemolymph haemagglutinins of tiger shrimp Penaeus monodon. Aquaculture Research 39: 1339-1345. DOI:10.1111/j.1365-2109.2008.02004.x
Pereyra, A., C. Agundis, B. Barrera, J. Alpuche, C. Sierra, R. Zenteno, E. Zente¬no & L. Vazquez. 2009. The use of monoclonal antibodies anti-lectin form freshwater prawn Macrobrachium rosenbergii (DeMan, 1879) in the recognition of protein with lectin activity in decapod´s he¬molymph. Preparative Biochemistry and Biotechnology 39: 308- 322. DOI: 10.1080/10826060902953384
Pereyra, A., J. Alpuche, J. C. Sainz, E. Zenteno & C. Agundis. 2012. Purifi¬cation and partial characterization of a lectin from the prawn Ma¬crobrachium americanum (Decapoda, Palaemonidae). Crustaceana 85: 1253-1267.
Purivirojkul, W., N. Areechon & P. Srisapoome. 2006. The effect of peptido¬glycan on immune response in Black Tiger Shrimp (Penaeus mo¬nodon Fabricius). Kasetsart Journal: Natural Sciencie 40: 11-187.
Sarlin, P. J. & R. Philip. 2011. Efficacy of marine yeasts and baker´s yeast as immunostimulants in Fenneropenaeus indicus: A compa¬rative study. Aquaculture 321: 173-178. DOI: 10.1016/j.aquacultu-re.2011.08.039
Sivakamavalli, J. & B. Vaseeharan. 2014. Purification, characterization and functional role of lectin from green tiger shrimp Penaeus semisul¬catus. International Journal of Biological Macromolecules 67: 64- 70. DOI:10.1016/j.ijbiomac.2014.03.008
Sivakamavalli, J., S. K. Tripathi, S. K. Singh & B. Vaseeharan. 2015. Homology modeling, molecular dynamics, and docking studies of pattern-re¬cognition transmembrane protein-lipopolysaccharide and β-1,3 glucan-binding protein from Fenneropenaeus indicus. Journal of Biomolecular Structure and Dynamics 33: 1269-1280. DOI:10.10 80/07391102.2014.943807
Smith, V. J. & K. Söderhäll. 1983. β-1,3 glucan activation of crustacean hemocytes in vitro and in vivo. Biological Bulletin 164: 299-314. DOI:10.2307/1541146
Sritunyalucksana, K., P. Sithisarn, B. Withayachumnarnkul& T. W. Flegel. 1999. Activation of prophenoloxidase, agglutinin and antibacterial acti¬vity in haemolymph of the black tiger prawn, Penaeus monodon, by immunoestimulants. Fish & Shellfish Immunology 9: 21-30. DOI:10.1006/fsim.1998.0161
Sukumaran, V., D. W. Lowman, T. P. Sajeevan & R. Philip. 2010. Marine yeast glucans confer better protection than that of baker’s yeast in Penaeus monodon against white spot syndrome virus infec¬tion. Aquaculture Research 41: 1799-1805. DOI:10.1111/j.1365- 2109.2010.02520.x
Sung, H. H., G. H. Kou & L. Song. 1994. Vibriosis resistance induced by glucan treatment in tiger shrimp (Penaeus monodon). Fish Patholo¬gy 29: 11-17. DOI:10.3147/jsfp.29.11
Tassanakajon, A., Somboonwiwat, K., Supungul, P. & S. Tang. 2013. Discovery of immune molecules and their crucial functions in shrimp im¬munity. Fish & Shellfish Immunology 34: 954-967. DOI:10.1016/j. fsi.2012.09.021
Towbin, H., T. Staehelin & J. Gordon. 1979. Electrophoretic transfer of pro¬teins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proceedings of the National Academy of Sciences 76: 4350-4354.
Vargas-Albores, F., M. A. Guzman, J. L. Ochoa. 1993. An anticoagulant so¬lution for haemolymph collection and prophenoloxidase studies of penaeid shrimp (Penaeus californiensis). 1993. Comparative Bio¬chemistry and Physiology 106A: 299-303.
Wang, X. W. & J. X. Wang. 2013. Diversity and multiple functions of lectins in shrimp immunity. Developmental & Comparative Immunology 39: 27-38. DOI:10.1016/j.dci.2012.04.009
Wang, X. W., J. D. Xu, X. F. Zhao, G. R. Vasta& J. X. Wang. 2014. A shrimp C-type lectin inhibits proliferation of the hemolymph microbiota by maintaining the expression of antimicrobial peptides. Jour¬nal of Biological Chemistry 289: 11779-11790. DOI:10.1074/jbc. M114.552307
Wei, X., X. Liu, J. Yang, J. Fang, H. Qiao, Y. Zhang & J. Yang. 2012. Two C-type lectins from shrimp Litopenaeus vannamei that might be involved in immune response against bacteria and virus. Fish & Shellfish Immunology 32: 132-140. DOI:10.1016/j.fsi.2011.11.001
Wilson, W., D. Lowman, S. P. Antony, J. Puthumana, I. S. Bright Singh & R. Philip. 2015. Immune gene expression profile of Penaeus monodon in response to marine yeast glucan application and white spot sy¬ndrome virus challenge. Fish & Shellfish Immunology 43: 346-56. DOI:10.1016/j.fsi.2014.12.032
Xu, Y. H., W.J. Bi, X. W. Wang, Y. R. Zhao, X. F. Zhao & J. X. Wang. 2014a. Two novel C-type lectins with a low-density lipoprotein receptor class A domain have antiviral function in the shrimp Marsupenaeus ja-ponicus. Developmental & Comparative Immunology 42: 323-332.
Xu, S., L. Wang, X. W. Wang, Y. R. Zhao, W. J. Bi, X. F. Zhao & J. X. Wang. 2014b. L-Type lectin from the kuruma shrimp Marsupenaeus ja¬ponicus promotes hemocyte phagocytosis. Developmental & Com¬parative Immunology 44: 397-405. DOI:10.1016/j.dci.2014.01.016
Zhang, Q., B. Tan, K. Mai, W. Zhang, H. Ma, Q. Ai, X. Wang & Z. Liufu. 2011. Die¬tary administration of Bacillus (B. licheniformis and B. subtilis) and isomaltooligosaccharide influences the intestinal microflora, im-munological parameters and resistance against Vibrio alginolyticus in shrimp, Penaeus japonicus (Decapoda: Penaeidae). Aquaculture Research 42: 943-952. DOI:10.1111/j.1365-2109.2010.02677.x
Zhao, H. X., J. M. Cao, A. L. Wang, Z. Y. Du, C. X. Ye, Y. H. Huang, H. B. Lan, T. T. Zhou & L. G. L. Li. 2012. Effect of long-term administration of dietary B 1,3 glucan on growth, physiological, and immune responses in Litopenaeus vannamei (Boone, 1931). Aquaculture International 20: 145-158. DOI:10.1007/s10499-011-9448-6
Downloads
Published
How to Cite
Issue
Section
License
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, HIDROBIOLÓGICA reconoce y respeta el derecho moral de los autores, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Publicar en la revista HIDROBIOLÓGICA tiene un costo de recuperación de $500 pesos mexicanos por página en blanco y negro (aproximadamente 29 dólares americanos) y $1000 pesos por página a color (aproximadamente 58 dólares americanos).
Todos los textos publicados por HIDROBIOLÓGICA sin excepción se distribuyen amparados bajo la licencia Creative Commons 4.0Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en HIDROBIOLÓGICA (por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en HIDROBIOLÓGICA.
Para todo lo anterior, el o los autor(es) deben remitir el formato de Carta-Cesión de la Propiedad de los Derechos de la primera publicación debidamente requisitado y firmado por el autor(es). Este formato se puede enviar por correo electrónico en archivo pdf al correo: enlacerebvistahidrobiológica@gmail.com; rehb@xanum.uam.mx (Carta-Cesión de Propiedad de Derechos de Autor).
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.