Scientific and technological perspectives of the water lily (Pontederia crassipes)
Innovative applications of its biomass
Palabras clave:
Eutrophication, invasive species, mitigation, patents, socioeconomic impact.Resumen
Background. The water lily (Pontederia crassipes), is considered globally as one of the most problematic invasive plants, with a high dissemination capacity and biological efficiency, enhancing significant environmental impacts in freshwater bodies. Goals. The present study provides a scientific and technological review of its phenology, dispersal mechanisms and innovative applications of its biomass. Methods. 100 articles from scientific and technological databases were analyzed, using a qualitative approach to evaluate technological surveillance, as well as intellectual property issues. The present review emphasizes P. crassipes impacts, predictions and effective strategies for the design of proper management and control. Results. As P. crassipes presents efficient mechanisms of dispersal and reproduction, a high viability of its seeds and their easy dispersal through currents, combined with human activities, its eradication is difficult. It was found that the greatest difficulty is the barriers that exist for its management. Logistical and financial challenges persist, especially in developing countries such as Mexico. Additionally, there is a lack of precise estimates on the economic costs and losses associated with the invasion of this plant. Therefore, a comprehensive review that integrates the most recent advances in these areas and provides a global vision of the current state of knowledge, as well as the opportunities and challenges that this species represents is needed. Conclusions. Overall, solid foundations for future research and public policies aimed at the sustainable management and use of the biomass of this plant will ensure a better approach.
Descargas
Citas
Ayanda, O. I., T. Ajayi & F P. Asuwaju. 2020. Eichhornia crassipes (Mart.) Solms: Uses, challenges, threats, and prospects. The Scientific World Journal 2020 (1): 3452172. DOI: https://doi.org/10.1155/2020/3452172
Bakrim, W. B., A. Ezzariai, F. Karoiach, F., Sobeh, M., Kibret, M., Hafidi, M., Kouisni, L. & Yasri, A. 2022. Eichhornia crassipes (Mart.) Solms: A comprehensive review of its chemical composition, traditional use, and value-added products. Frontiers in Pharmacology 13: 842511. DOI: https://doi.org/10.3389/fphar.2022.842511
Barrett, S. C. H. & I. W. Forno. 1982. Style morph distribution in new world populations of Eichhornia crassipes (Mart.) Solms-Laubach (water hyacinth). Aquatic Botany. 13(1982): 299-306. DOI: https://doi.org/10.1016/0304-3770(82)90065-1
Carreño-Sayago U. F. & C. Rodriguez-Parra. 2018, Eichhornia crassipes (Mart.) Solms: an integrated phytoremediation and bioenergy system. Revista Chapingo serie ciencias forestales y del ambiente. 5(3): 399-411. DOI: https://doi.org/10.5154/r.rchscfa.2018.06.051
Coetzee, J. A. & M. P. Hill. 2012. The role of eutrophication in the biological control of water hyacinth, Eichhornia crassipes, in South Africa. BioControl 57 (2): 247-261. DOI: https://doi.org/10.1007/s10526-011-9426-y
Espinosa-García, F. & J. L. Villaseñor. 2017. Biodiversity, distribution, ecology and management of non-native weeds in Mexico: a review. Revista Mexicana de Biodiversidad 88: 76–96. DOI: https://doi.org/10.1016/j.rmb.2017.10.010
Flores-Rojas, A. I., N. A. Mendellín-Castillo, H. G. Cisneros-Ontiveros, G. A. Acosta-Doporto, S. A. Cruz-Briano, R. Leyva-Ramos, M. S. Berber-Mendoza, P. E. Díaz-Flores, R. Ocampo-Pérez & G. J. Labrada-Delgado. 2024. Detection and mapping of the seasonal distribution of water hyacinth (Eichhornia crassipes) and valorization as a biosorbent of Pb(II) in water. Environmental Science and Pollution Research 31: 40190-40207. DOI: https://doi.org/10.1007/s11356-023-29780-3
Ghoussein, Y., H. Abou, A. Fadel, J. Coidreuse, H. Nicolas, G. Faour & J. Haury. 2023. Biology and ecology of Pontederia crassipes in a Mediterranean river in Lebanon. Aquatic Botany 188: 103681. DOI: https://doi.org/10.1016/j.aquabot.2023.103681
Godana G., F. Fufa & G. Debesa. 2022. Eichhornia crassipes expansion detection using geospatial techniques: Lake Dambal, Oromia, Ethiopia. Environmental Challenges. 9(2022): 100616. DOI: https://doi.org/10.1016/j.envc.2022.100616
Gopalakrishnan, A., M. Rajkumar & J. Sun et al. 2011. Integrated biological control of water hyacinths, Eichhornia crassipes by a novel combination of grass carp, Ctenopharyngodon idella (Valenciennes, 1844), and the weevil, Neochetina spp. Chinese Journal of Oceanology and Limnology 29: 162–166. DOI: https://doi.org/10.1007/s00343-011-0101-z
Guo H., J. Cui & J. Li. 2022. Biomass power generation in China: Status, policies and recommendations. Energy Reports. 8(13): 687-696. DOI: https://doi.org/10.1016/j.egyr.2022.08.072
Kamala-Bai, S., G. Avinash, K. K. Sindhu & K. N: Getha. 2023. Allelopathic potential of Alternanthera philoxeroides (Mart.) Griseb on growth and development of Eichhornia crassipes (Mart.) Solms. Allelopathy Journal 60 (2): 159–170. DOI: https://doi.org/10.26651/allelo.j/2023-60-2-1461
Kariyawasam, C. S., L. Kumar & S. S. Ratnayake. 2021. Potential risks of invasive alien plant species on agriculture under climate change scenarios in Sri Lanka. Current Research in Environmental Sustainability 3: 100051. DOI: https://doi.org/10.1016/j.crsust.2021.100051
Karouach, F., W. B. Bakrim, A. Ezzariai, M. Sobeh, M. Kribet, A. Yasri, M. Hafidi & L. Kouisni. 2022. A comprehensive evaluation of the existing approaches for controlling and managing the proliferation of water hyacinth (Eichhornia crassipes): Review. Frontiers in Environmental Science 9: 767871. DOI: https://doi.org/10.3389/fenvs.2021.767871
Liu, J., X. Chen, Y. Wang, X. Li, D. Yu & C. Liu. 2016. Response differences of Eichhornia crassipes to shallow submergence and drawdown with an experimental warming in winter. Acuatic Ecology 50: 307-314. DOI: https://doi.org/10.1007/s10452-016-9579-y
Lu, J., J. Wu, Z. Fu & L. Zhu. 2007. Water hyacinth in China: A sustainability science-based management framework. Environmental Management. 40: 823-830, DOI: https://doi.org/10.1007/s00267-007-9003-4
Martínez-Jiménez M. & M. A. Gómez-Balandra. 2007. Integrated control of Eichhornia crassipes by using insects and plant pathogens in Mexico, Crop Protection 26(8):1234-1238. DOI: https://doi.org/10.1016/j.cropro.2006.10.028
Martínez-Jiménez, M. & M. A: Gómez-Balandra. 2022. Geographic distribution and the invasive scope of aquatic plants in México. BioInvasions Records 11 (1): 1-12. DOI: https://doi.org/10.3391/bir.2022.11.1.01
Mathiventhan, T., T. Jayasingam & M. Umaramani. 2018. Salinity would be an option to control Eichhornia crassipes (Mart.) Solms [water hyacinth]: Sri Lanka perspective. Tropical Plant Research 5 (3): 331–335.
MITECO (Ministerio para la Transición Ecológica). 2019. Estrategia de gestión, control y posible erradicación del camalote (Eichhornia crassipes). Estrategias de control – Criterios orientadores. Available online at: https://www.miteco.gob.es/content/dam/miteco/es/biodiversidad/publicaciones/estrategias/estrategiadegestioneichhorniacrassipes3deoctubre2019_tcm30-502314.pdf
Niño-Sulkowska, M. S. & A. Lot. 1983. Estudio demográfico del lirio acuático Eichhormia crassipes (Mart.) Solms: Dinámica de crecimiento en dos localidades selectas de México. Botanical Sciences (45): 71-83. DOI: http://dx.doi.org/10.17129/botsci.1300
Oduor, A. M. O., B. Yang & J. Li. 2023. Alien ornamental plant species cultivated in Taizhou, southeastern China, may experience greater range expansions than native species under future climates. Global Ecology and Conservation 41 (2023): e02371. DOI: https://doi.org/10.1016/j.gecco.2023.e02371
Pinho, H. J. O. & D. M. R. Mateus. 2023. Bioenergy routes for valorizing constructed wetland vegetation: an overview. Ecological Engineering. 187: 106867. DOI: https://doi.org/10.1016/j.ecoleng.2022.106867
Pradhan, S., A. J. Borah, M. K. Poddar, P. K. Dikshit, L. Rohidas & V. S. Moholkar. 2017. Microbial production, ultrasound-assisted extraction and characterization of biopolymer polyhydroxybutyrate (PHB) from terrestrial (P. hysterophorus) and aquatic (E. crassipes) invasive weeds. Bioresource Technology. 242 (2017): 304-310. DOI: https://doi.org/10.1016/j.biortech.2017.03.117
Radhika D. & A. G. Murugesan. 2012. Bioproduction, statistical optimization and characterization of microbial plastic (poly 3-hydroxy butyrate) employing various hydrolysates of water hyacinth (Eichhornia crassipes) as sole carbon source. Bioresource Technology 121(2012): 83-92. DOI: https://doi.org/10.1016/j.biortech.2012.06.107
Rodríguez-Lara, J. W., F. Cervantes-Ortiz, G. Arámbula-Villa, L. A. Mariscal-Amaro, C. L. Aguirre-Mancilla & E. Andrio-Enríquez. 2022. Water hyacinth (Eichhornia crassipes): A review. Agronomía Mesoamericana 33 (1): 44201. DOI:10.15517/am.v33i1.44201
Shanab, S. M. M., E. A. Shalaby, D. A. Lightfoot & H. El-Shemy. 2010. Allelopathic effects of water hyacinth [Eichhornia crassipes]. PLoS ONE 5(10): e13200. DOI: https://doi.org/10.1371/journal.pone.0013200
Sierra-Carmona, C. G., M. G. Hernández-Orduña & R. Murrieta-Galindo R. 2022. Alternative uses of water hyacinth (Pontederia crassipes) from a sustainable perspective: A systematic literature review. Sustainability 14 (7): 3931. DOI: https://doi.org/10.3390/su14073931
SIL (Sistema de Información Legislativa). 2017. 4 PPA a llevar a cabo el retiro y manejo sustentable de lirio acuático de la zona chinampera de Xochimilco. Available online at: http://sil.gobernacion.gob.mx/Archivos/Documentos/2017/04/asun_3516878_20170405_1491406084.pdf
Sitoe, E. & B. E. Van Wyk. 2024. An inventory and analysis of the medicinal plants of Mozambique. Journal of Ethnopharmacology 319: 117137. DOI: https://doi.org/10.1016/j.jep.2023.117137
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 HIDROBIOLÓGICA

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, HIDROBIOLÓGICA reconoce y respeta el derecho moral de los autores, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Publicar en la revista HIDROBIOLÓGICA tiene un costo de recuperación de $500 pesos mexicanos por página en blanco y negro (aproximadamente 29 dólares americanos) y $1000 pesos por página a color (aproximadamente 58 dólares americanos).
Todos los textos publicados por HIDROBIOLÓGICA sin excepción se distribuyen amparados bajo la licencia Creative Commons 4.0Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en HIDROBIOLÓGICA (por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en HIDROBIOLÓGICA.
Para todo lo anterior, el o los autor(es) deben remitir el formato de Carta-Cesión de la Propiedad de los Derechos de la primera publicación debidamente requisitado y firmado por el autor(es). Este formato se puede enviar por correo electrónico en archivo pdf al correo: enlacerebvistahidrobiológica@gmail.com; rehb@xanum.uam.mx (Carta-Cesión de Propiedad de Derechos de Autor).
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.