Estimation of the specific surface area in marine macroalgae using Langmuir isotherms as an alternative technique for studies of epibenthic assemblages

Autores/as

  • Lizbeth Estrada Vargas Laboratorio de Botánica Marina y Planctología, Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana. Mar Mediterráneo 314, Fracc. Costa Verde, Boca del Río, Veracruz, 94294. México
  • Héctor Hernández García Facultad de Ciencias Químicas, Universidad Veracruzana. Circuito Gonzalo Aguirre Beltrán, s/n, Zona Universitaria, Xalapa, Veracruz, 91090. México
  • Yuri B. Okolodkov Laboratorio de Botánica Marina y Planctología, Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana. Mar Mediterráneo 314, Fracc. Costa Verde, Boca del Río, Veracruz, 94294. México

Palabras clave:

Epibentos, modelo de absorción de Langmuir, macroalgas, azul de metileno, área superficial

Resumen

Antecedentes: Las macroalgas bentónicas ofrecen un hábitat adecuado para el desarrollo de diferentes especies epibentónicas. Determinar el área superficial específica de las macroalgas permite el estudio de las asociaciones epibentónicas, así como, la evaluación de las interacciones entre el hospedero y el epibionte. Objetivos: El objetivo de esta investigación fue estimar el área superficial específica de las macroalgas bentónicas, recolectadas en dos sitios del suroeste del Golfo de México. Metodología: De agosto de 2016 a julio de 2017 se realizaron 12 recolectas mensuales. Mediante isotermas de Langmuir se verificó la formación de una monocapa de azul de metileno sobre la superficie de las macroalgas. Con la finalidad de promover la formación de la monocapa, a la biomasa de las algas pardas se le aplicó un tratamiento químico. Resultados: Se observó una alta correspondencia entre los datos experimentales y calculados (R2>0.96) en el punto de equilibrio de adsorción para todas las algas estudiadas (11 especies de Rhodophyta, 6 de Chlorophyta y 4 de Phaeophyceae de cuatro grupos morfo-funcionales). La formación de la monocapa permitió la estimación del área superficial específica de las macroalgas, la cual varió significativamente entre especies, desde 24 hasta 387 m2 g-1. Los resultados mostraron que las algas corticadas prestaron la mayor área superficial específica (143-222 m2 g-1), y que las calcáreas articuladas tenían la menor área (63-104 m2 g-1). Sin embargo, no se encontró correlación entre el área superficial específica y los grupos morfofuncionales (P<0.05). En la mayoría de las algas, se observaron diferencias significativas en el área superficial específica en talos de la misma especie (P<0.05). Conclusiones: Los resultados pueden estar relacionados con la variabilidad intraespecífica en las características morfológicas del talo que ocurren durante la ontogenia bajo condiciones ambientales. La técnica de adsorción de azul de metileno es adecuada para la determinación del área superficial específica y permite la comparación de macroalgas de diferentes grupos morfofuncionales, minimizando la incertidumbre asociada a las características específicas de especie.

Descargas

Citas

Airoldi, L. 2001. Distribution and morphological variation of low-shore algal turfs. Marine Biology 138: 1233-1239. DOI:10.1007/s002270100546

Anderson, K., L. Close, R. E. DeWreede, B. J. Lynch, C. Ormond & M. Walker. 2006. Biomechanical properties and holdfast morphology of coenocytic algae (Halimedales, Chlorophyta) in Bocas del Toro, Panama. Journal of Experimental Marine Biology and Ecology 328 (2): 155-167. DOI:10.1016/j.jembe.2005.07.005

Armitage, C. S. & K. Sjøtun. 2016. Epiphytic macroalgae mediate the impact of a non-native alga on associated fauna. Hydrobiologia 776: 35-49. DOI:10.1007/s10750-016-2707-9

Armstrong, N., D. Planas & E. Prepas. 2003. Potential for estimating macrophyte surface area from biomass. Aquatic Botany 75 (2): 173-179. DOI:10.1016/S0304-3770(02)00169-9

Arredondo-Vega, B. O. & D. Voltolina-Lobina (Eds.). 2007. Métodos y herramientas analíticas en la evaluación de la biomasa microalgal. Centro de Investigaciones Biológicas del Noreste, S.C., La Paz, Baja California Sur, México. 97 p.

Balata, D., L. Piazzi & F. Rindi. 2011. Testing a new classification of morphological functional groups of marine macroalgae for the detection of responses to stress. Marine Biology 158: 2459-2469. DOI:10.1007/s00227-011-1747-y

Bates, C. R. 2009. Host taxonomic relatedness and functional-group affiliation as predictors of seaweed-invertebrate epifaunal associations. Marine Ecology Progress Series 387: 125-136. DOI:10.3354/meps08089

Bergey, E. A. & G. M. Getty. 2006. A review of methods for measuring the surface area of stream substrates. Hydrobiologia 556 (1): 7-16. DOI:10.1007/s10750-005-1042-3

Bestani, B., N. Benderdouche, B. Benstaali, M. Belhakem & A. Addou. 2008. Methylene blue and iodine adsorption onto an activated desert plant. Bioresource Technology 99 (17): 8441-8444. DOI:10.1016/j.biortech.2008.02.053

Biber, P. D., M. A. Harwell & W.P. Cropper Jr. 2004. Modeling the dynamics of three functional groups of macroalgae in tropical seagrass habitats. Ecological Modeling 175 (1): 25-54. DOI:10.1016/j.ecolmodel.2003.10.003

Bomber, J. W., M. G. Rubio & D. R. Norris. 1989. Epiphytism of dinoflagellates associated with the disease ciguatera: substrate specificity and nutrition. Phycologia 28 (3): 360-368.

Cattaneo, A. & R. Carignan. 1983. A colorimetric method for measuring the surface area of aquatic plants. Aquatic Botany 17 (3-4): 291-294.

Chemello, R. & M. Milazzo. 2002. Effect of algal architecture on associated fauna: some evidence from phytal molluscs. Marine Biology 140: 981-990. DOI:10.1007/s00227-002-0777-x

Christie, H., N. M. Jørgensen, K. M. Norderhaug & E. Waage-Nielsen. 2003. Species distribution and habitat exploitation of fauna associated with kelp (Laminaria hyperborea) along the Norwegian coast. Journal of the Marine Biology Association of the United Kingdom 83 (4): 687-699. DOI:10.1017/S0025315403007653h

Collado-Vides, L., L. M. Rutten & J. W. Fourqurean. 2005. Spatiotemporal variation of the abundance of calcareous green macroalgae in the Florida Keys: a study of synchrony within a macroalgal functional-form group. Journal of Phycology 41 (4): 742-752. DOI:10.1111/j.1529-8817.2005.00099.x

García-López, D. Y., L. E. Mateo-Cid & C. Mendoza-González. 2017. Nuevos registros y lista actualizada de las algas verdes (Chlorophyta) del litoral de Veracruz, México. Gayana Botanica 74 (1): 41-56. DOI:10.4067/S0717-66432017005000104

Estrada-Vargas, L., Y. B. Okolodkov, C. Galicia-García, H. Pérez-España, N. Álvarez-Velázquez & I. Martínez-Serrano. 2019. Corales hermatípicos y macroalgas en arrecifes bordeantes frente a Chachalacas, Veracruz, suroeste del Golfo de México. In: Granados-Barba, A., L. Ortiz-Lozano, C. González-Gándara & D. Salas-Monreal (Eds.). Estudios cientíificos en el Corredor Arrecifal del Suroeste del Golfo de México. Universidad Autónoma de Campeche, Campeche, Camp., México, pp. 178-189.

Geissert-Kientz, D. 1999. Regionalización geomorfológica del estado de Veracruz. Investigaciones Geográficas 40: 23-47. DOI:10.14350/rig.59092

Guiry, M. D. & G. M. Guiry. 2024. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway, Ireland. Available online at: http://www.algaebase.org (accessed: 10 January 2024).

Hähner, G., A. Marti, N. D. Spencer & W. R. Caseri. 1996. Orientation and electronic structure of methylene blue on mica: A near edge x-ray absorption fine structure spectroscopy study. Journal of Chemical Physics 104 (19): 7749-7757. DOI:10.1063/1.471451

Hanisak, M. D., M. M. Littler & D. S. Littler. 1988. Significance of macroalgal polymorphism: intraspecific tests of the functional-form model. Marine Biology 99: 157-165.

Harrod, J. J. & R. E. Hall. 1962. A method for determining the surface areas of various aquatic plants. Hydrobiologia 20: 173-178.

Harvey, S. C. 1980. Antiseptics and disinfectants; fungicides; ectoparasiticides. In: Goodman Gilman, A., L. S. Goodman, A. Gilman, S. E. Meyer & K. L. Melmon (Eds.). Goodman and Gilman’s The pharmacological basis of therapeutics. 6th ed. Macmillan Publishing Co., Inc., New York, NY, USA, pp. 964-987.

Hatt, D. C. & L. Collado-Vides. 2019. A comparative analysis of the organic and inorganic carbon content of Halimeda and Penicillus (Chlorophyta, Bryopsidales) in a coastal subtropical lagoon. Botanica Marina 62 (4): 323-326. DOI:10.1515/bot-2028-0095

Kaewprasit, C., E. Hequet, N. Abidi & J. P. Gourlot. 1998. Application of methylene blue adsorption to cotton fiber specific surface area measurement: Part I. Methodology. Journal of Cotton Science 2 (4): 164-173.

Lee, D. & S. J. Carpenter. 2001. Isotopic disequilibrium in marine calcareous algae. Chemical Geology 172 (3-4): 307-329. DOI:10.1016/S0009-2541(00)00258-8

Littler, D. S. & M. M. Littler. 2000. Caribbean reef plants. An identification guide to the reef plants of the Caribbean, Bahamas, Florida, and Gulf of Mexico. OffShore Graphics, Inc., Washington, D.C., USA. 542 p.

Littler, M. M. & K. E. Arnold. 1982. Primary productivity of marine macroalgal functional-form groups from southwestern North America. Journal of Phycology 18 (3): 307-311. DOI:10.1111/j.1529-8817.1982.tb03188.x

Littler, M. M., D. S. Littler & P. R. Taylor. 1983. Evolutionary strategies in a tropical barrier reef system: Functional‐form groups of marine macroalgae. Journal of Phycology 19 (2): 229-237. DOI:10.1111/j.0022-3646.1983.00229.x

Lobel, P. S., D. M. Anderson & M. Durand-Clement. 1988. Assessment of ciguatera dinoflagellate populations: Sample variability and algal substrate selection. The Biological Bulletin 175 (1): 94-101. DOI:10.2307/1541896

Lodeiro, P., B. Cordero, Z. Grille, R. Herrero & M. E. Sastre de Vicente. 2004. Physicochemical studies of cadmium(II) biosorption by the invasive alga in Europe, Sargassum muticum. Biotechnology and Bioengineering 88 (2): 237-247. DOI:10.1002/bit.20229

NOAA (National Oceanic and Atmospheric Administration). 2024. CAMEO Chemicals. Chemical datasheet. Methylene blue trihydrate. Available online at: https://cameochemicals.noaa.gov/chemical/20645 (accessed: 20 April 2024).

NTP (National Toxicology Program). 2008. NTP Technical Report on the toxicology and carcinogenesis studies of methylene blue trihydrate (Cas No. 7220-79-3) in F344/N rats and B6C3F1 mice (gavage studies). National Toxicology Program Technical Report 540, NIH Publication No. 08-4429. National Institute of Health, Public Health Service, U.S. Department of Health and Human Services, Durham, NC, USA. 224 p.

Padilla, D. K. & B. J. Allen. 2000. Paradigm lost: reconsidering functional form and group hypotheses in marine ecology. Journal of Experimental Marine Biology and Ecology 250 (1-2): 207-221. DOI:10.1016/S0022-0981(00)00197-0

Parsons, M. L. & L. B. Preskitt. 2007. A survey of epiphytic dinoflagellates from the coastal waters of the island of Hawai’i. Harmful Algae 6 (5): 658-669. DOI:10.1016/j.hal.2007.01.001

Phillips, J. C., G. A. Kendrick & P. S. Lavery. 1997. A test of a functional group approach to detecting shifts in macroalgal communities along a disturbance gradient. Marine Ecology Progress Series 153: 125-138. DOI:10.3354/meps153125

Pinzón-Bello, J. A. 1997. Superficie específica de una bentonita mediante la adsorción de azul de metileno. Revista Colombiana de Química 26 (1): 1-14.

Pratiwi, D., D. J. Prasetyo & C. D. Poeloengasih. 2019. Adsorption of Methylene Blue dye using marine algae Ulva lactuca. IOP Conference Series: Earth and Environmental Science 251:012012, 2nd International Conference on Natural Products and Bioresource Sciences - 2018: 1-5.

Rosas-Alquicira, E. F., R. Riosmena-Rodríguez, G. Hernández-Carmona & A. I. Neto. 20132. Development of conceptacles in Amphiroa (Corallinales, Rhodophyta). Acta Botanica Brasilica 27 (4): 698-708. DOI:10.1590/S0102-33062013000400008

Rover, T., C. Simioni, L. Ouriques & Z. Bouzon. 2015. Cytochemical, structural and ultrastructural characterization of tetrasporogenesis in Bostrychia radicans (Ceramiales, Rhodophyta) from the mangroves of Itacorubi and Rio Ratones, Santa Catarina, Brazil. American Journal of Plant Sciences 6 (14): 2393-2404. DOI:10.4236/ajps.2015.614242

Rubín, E., P. Rodriguez, R. Herrero, J. Cremades, I. Barbara & M. E. Sastre de Vicente. 2005. Removal of Methylene Blue from aqueous solutions using as biosorbent Sargassum muticum: an invasive macroalga in Europe. Journal of Chemical Technology and Biotechnology 80 (3): 291-298. DOI:10.1002/jctb.1192

Rubín, E., P. Rodríguez, R. Herrero & M. E. Sastre de Vicente. 2010. Adsorption of Methylene Blue on chemically modified algal biomass: Equilibrium, dynamic, and surface data. Journal of Chemical Engineering Data 55 (12): 5707-5714. DOI:10.1021/je100666v

Ryland, J. S. 1974. Observations on some epibionts of gulf-weed, Sargassum natans (L.) Meyen. Journal of Experimental Marine Biology and Ecology 14 (1): 17-25. DOI:10.1016/0022-0981(74)90034-3

Salas-Pérez, J. J. & A. Granados-Barba. 2008. Oceanographic characterization of the Veracruz reefs system. Atmósfera 21 (3): 281-301. https://www.revistascca.unam.mx/atm/index.php/atm/article/view/8607

Sánchez-Rodriguez, E. 1980. Ficoflora del sustrato rocoso dentro de las costas del Golfo de Méexico, Méexico. Boletim do Instituto de Oceanogria (São Paulo) 29 (2): 347-350. DOI:10.1590/S0373-55241980000200069

Sandoval-Ibarra, F. D., J. L. López-Cervantes & J. Gracia-Fadrique. 2015. Ecuación de Langmuir en líquidos simples y tensoactivos. Educación Química 26 (4): 307-313. DOI:10.1016/j.eq.2015.03.002

Sharma, D. C. & C. F. Forster. 1994. A preliminary examination into the adsorption of hexavalent chromium using low-cost adsorbents. Bioresource Technology 47 (3): 257-264. DOI:10.1016/0960-8524(94)90189-9

Shaughnessy, F. J., R. E. De Wreede & E. C. Bell. 1996. Consequence of morphology and tissue strength to blade survivorship of two closely related Rhodophyta species. Marine Ecology Progress Series 136: 257-266. DOI:10.3354/meps136257

Sher-Kaul, S., B. Oertli, E. Castella & J. B. Lachavanne. 1995. Relationship between biomass and surface area of six submerged aquatic plant species. Aquatic Botany 51 (1-2): 147–154. DOI:10.1016/0304-3770(95)00460-H

Steneck, R. S. & M. N. Dethier. 1994. A functional group approach to the structure of algal-dominated communities. Oikos 69 (3): 476-493. DOI:10.2307/3545860

Taylor, R. B. & R. G. Cole. 1994. Mobile epifauna on subtidal brown seaweeds in northeastern New Zealand. Marine Ecology Progress Series 115: 271-282. DOI:10.3354/meps115271

Tindall, D. R. & S. L. Morton. 1998. Community dynamics and physiology of epiphytic/benthic dinoflagellates associated with ciguatera. In: Anderson, D. M., A. D. Cembella & G. M. Hallegraeff (Eds.). Physiological ecology of harmful algal blooms. NATO ASI Series, Series G: Ecological Sciences 41, Springer-Verlag, Berlin, Germany, pp. 293-313.

Torres, A. C., P. Veiga, M. Rubal & I. Sousa-Pinto. 2015. The role of annual macroalgal morphology in driving its epifaunal assemblages. Journal of Experimental Marine Biology and Ecology 464: 96-106. DOI:10.1016/j.jembe.2014.12.016

Tunnell Jr, J. W. 1992. Natural versus human impacts to southern Gulf of Mexico coral reef resources. In: Richmond, R. H. (Ed.). Proceedings of the Seventh International Coral Reef Symposium, Guam, Micronesia, 22-27 June 1992, vol. 1. University of Guam Press, pp. 300-306.

Vesk, M. & M. Borowitzka. 1984. Ultrastructure of tetrasporogenesis in the coralline alga Haliptilon cuvieri (Rhodophyta). Journal of Phycology 20 (4): 501-515. DOI:10.1111/j.0022-3646.1984.00501.x

Vilar, V. J. P., C. M. S. Botelho & R. A. R. Boaventura. 2007. Methylene blue adsorption by algal biomass based materials: Biosorbents characterization and process behaviour. Journal of Hazardous Materials 147 (1-2): 120-132. DOI:10.1016/j.jhazmat.2006.12.055

Wefer, G. 1980. Carbonate production by algae Halimeda, Penicillus and Padina. Nature 285 (5763): 323-324. DOI:10.1038/285323a0

Zhu, C. J. & Y. K. Lee. 1997. Determination of biomass dry weight of marine microalgae. Journal of Applied Phycology 9 (2): 189-194. DOI:10.1023/A:1007914806640

Descargas

Publicado

2025-04-01

Cómo citar

Estrada Vargas, L., Hernández García, H., & Okolodkov, Y. B. (2025). Estimation of the specific surface area in marine macroalgae using Langmuir isotherms as an alternative technique for studies of epibenthic assemblages. HIDROBIOLÓGICA, 35(1). Recuperado a partir de https://hidrobiologica.izt.uam.mx/index.php/revHidro/article/view/1778

Número

Sección

Artículos

Artículos más leídos del mismo autor/a