Diversidad y flexibilidad metabólica de consorcios nitrificantes y desnitrificantes usados en el tratamiento de aguas residuales
Palabras clave:
Ciclo del nitrógeno, consorcio, diversidad y flexibilidad metabólica, proceso desnitrificante, proceso nitrificanteResumen
Antecedentes. Los procesos de la nitrificación y desnitrificación forman parte del ciclo biogeoquímico del nitrógeno. Los microorganismos que los llevan a cabo son empleados en los sistemas dedicados al tratamiento de aguas residuales para eliminar un contaminante muy común; el amonio (NH4 +), y liberar nitrógeno molecular (N2 ). Objetivo. Mostrar la diversidad y flexibilidad metabólica de consorcios nitrificantes y desnitrificantes usados en la eliminación de nitrógeno de aguas residuales. Resultados. En estos microorganismos taxonómicamente diversos, las bacterias son las mejor estudiadas. Se las divide y nombra según el proceso principal que realizan. Aunque en realidad gracias a los genes que comparten, pueden presentar una diversidad y flexibilidad metabólica, que las capacita para sobrevivir en condiciones cambiantes y con funciones distintas del proceso que canónicamente se les atribuye. Los genes característicos de estos procesos son empleados como marcadores moleculares en estudios de comunidades. Sin embargo, taxones conocidos canónicamente como nitrificantes pueden tener genes funcionales propios del proceso desnitrificante. Microorganismos catalogados como típicamente desnitrificantes pueden tener genes funcionales del proceso nitrificante. Los consorcios (flóculos, gránulos y biopelículas) empleados en la eliminación de NH4 + son un ejemplo de comunidades que pueden tener capacidades superiores o distintas de las que tienen sus integrantes individualmente. Conclusiones. La presente revisión conjunta información fisiológica, genética y ecológica que contribuye a entender mejor la gran diversidad y flexibilidad metabólica de los consorcios nitrificantes y desnitrificantes. Se destaca que, en los sistemas artificiales, un mayor conocimiento de los taxones participantes, así como de sus relaciones tróficas, metabólicas y de comunicación posibilitaría un mejor control de los procesos nitrificante y desnitrificante para que estos sean más eficientes y estables.
Descargas
Citas
Ahmed, M., M. Rauf, Z. Mukhtar & N. A. Saeed. 2017. Excessive use of nitrogenous fertilizers: an unawareness causing serious threats to environment and human health. Environmental Science and Pollution Research 24: 26983-26987. DOI:10.1007/s11356-017-0589-7
Alvarez, L., C. Bricio, M. J. Gómez & J. Berenguer. 2011. Lateral transfer of the denitrification pathway genes among Thermus thermophilus strains. Applied and Environmental Microbiology 77 (4): 1352-1358. DOI:10.1128/AEM.02048-10
Arnoldi, J. F., M. Loreau & B. Haegeman. 2019. The inherent multidimensionality of temporal variability: how common and rare species shape stability patterns. Ecology Letters 22 (10): 1557-1567. DOI:10.1111/ele.13345
Asamoto, C. K., K. R. Rempfert, V. H. Luu, A. D. Younkin & S. H. Kopf. 2021. Enzyme-Specific Coupling of Oxygen and Nitrogen Isotope Fractionation of the Nap and Nar Nitrate Reductases. Environmental Science and Technology 55 (8): 5537-5546. DOI:10.1021/acs. est.0c07816
Awolusi, O. O., S. K. S. Kumari & F. Bux. 2015. Ecophysiology of nitrifying communities in membrane bioreactors. International Journal of Environmental Science and Technology 12 (2): 747-762. DOI:10.1007/ s13762-014-0551-x
Beeckman, F., H. Motte & T. Beeckman. 2018. Nitrification in agricultural soils: impact, actors and mitigation. Current Opinion in Biotechnology 50: 166-173. DOI:10.1016/j.copbio.2018.01.014
Bernabeu, E., J. M. Miralles-Robledillo, M. Giani, E. Valdés, R. M. Martínez-Espinosa, & C. Pire. 2021. In silico analysis of the enzymes involved in haloarchaeal denitrification. Biomolecules 11 (7): 1-22. DOI:10.3390/biom11071043
Biswas, T., S. Banerjee, A. Saha, A. Bhattacharya, C. Chanda, L. M. Gantayet, P. Bhadury & S. R. Chaudhuri. 2022. Bacterial consortium based petrochemical wastewater treatment: from strain isolation to industrial effluent treatment. Environmental Advances 7: 100132. DOI:10.1016/j.envadv.2021.100132
Bock, E. 1976. Growth of Nitrobacter in the presence of organic matter. II. Chemoorganotrophic growth of Nitrobacter agilis. Archives of Microbiology 108 (3): 305-312. DOI:10.1007/BF00454857
Bock, E., H. Koops, U. C. Möller & M. Rudert. 1990. A new facultatively nitrite oxidizing bacterium, Nitrobacter vulgaris sp. nov. Archives of Microbiology 153: 105-110. DOI:10.1007/BF00247805
Boyle, E. 2017. Nitrogen pollution knows no bounds. Science 356 (6339): 700-701. DOI:10.1126/science.aan3242
Brenner, K., L. You & F. H. Arnold. 2008. Engineering microbial consortia: a new frontier in synthetic biology. Trends in Biotechnology 26 (9): 483-489. DOI:10.1016/j.tibtech.2008.05.004
Brockhurst, M. A., A. Buckling, D. Racey & A. Gardner. 2008. Resource supply and the evolution of public-goods cooperation in bacteria. BMC Biology 6: 20. DOI:10.1186/1741-7007-6-20
Buratti, S., C. E. Girometta, R. M. Baiguera, B. Barucco, M. Bernardi, G. De Girolamo, M. Malgaretti, D. Olivia, A. M. Picco & E. Savino. 2022. Fungal Diversity in Two Wastewater Treatment Plants in North Italy. Microorganisms 10 (6): 1096. DOI:10.3390/microorganisms10061096
Cai, Y. M. 2020. Non-surface Attached Bacterial Aggregates: A ubiquitous third lifestyle. Frontiers in Microbiology 11:557035. DOI:10.3389/ fmicb.2020.557035
Caranto, J. D. & K. M. Lancaster. 2017. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. Proceedings of the National Academy of Sciences of the United States of America 114 (31): 8217-8222. DOI:10.1073/ pnas.1704504114
Carreira, C., S. R. Pauleta & I. Moura. 2017. The catalytic cycle of nitrous oxide reductase — The enzyme that catalyzes the last step of denitrification. Journal of Inorganic Biochemistry 177: 423-434. DOI:10.1016/j.jinorgbio.2017.09.007
Castellano-Hinojosa, A., P. Maza-Márquez, J. González-López & B. Rodelas. 2020. Influence of operation parameters on the shaping of the denitrification communities in full-scale municipal sewage treatment plants. Journal of Water Process Engineering 37: 101465. DOI:10.1016/j.jwpe.2020.101465
Chain, P., J. Lamerdin, F. Larimer, W. Regala, V. Lao, M. Land, L. Hauser, A. Hooper, M. Klotz, J. Norton, L. Sayavedra-Soto, D. Arciero, N. Hommes, M. Whittaker & D. Arp. 2003. Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. Journal of Bacteriology 185 (9): 2759-2773. DOI:10.1128/Jb.185.9.2759-2773.2003
Congestri, R., S. Savio, S. Farrotti, A. Amati, K. Krasojevic, N. Perini, F. Costa & L. Migliore. 2020. Developing a microbial consortium for removing nutrients in dishwasher wastewater: towards a biofilter for its up-cycling. Water Science and Technology 82 (6): 1142-1154. DOI:10.2166/wst.2020.325
Conthe, M., P. Lycus, M. Ø. Arntzen, A. Ramos da Silva, Å. Frostegård, L. R. Bakken, R. Kleerebezem & M. C. M. van Loosdrecht. 2019. Denitrification as an N2 O sink. Water Research 151: 381-387. DOI:10.1016/j. watres.2018.11.087
Cordero, O. X. & M. S. Datta. 2016. Microbial interactions and community assembly at microscales. Current Opinion in Microbiology 31: 227-234. DOI:10.1016/j.mib.2016.03.015 Daims, H., E. V. Lebedeva, P. Pjevac, P. Han, C. Herbold, M. Albertsen, M. Jehmlich, M. Palatinszky, J. Vierheilig, A. Bulaev, R.H. Kirkegaard, M. von Bergen, T. Rattei, B. Bendinger, P.H. Nielsen & M. Wagner. 2015. Complete nitrification by Nitrospira bacteria. Nature 528 (7583): 504-509. DOI:10.1038/nature16461
Daims, H., S. Lücker & M. Wagner. 2016. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends in Microbiology 24 (9): 699-712. DOI:10.1016/j.tim.2016.05.004
Dangi, A. K., B. Sharma, R. T. Hill & P. Shukla. 2019. Bioremediation through microbes: systems biology and metabolic engineering approach. Critical Reviews in Biotechnology 39 (1): 79-98. DOI:10.1080/073 88551.2018.1500997
Di Capua, F., F. Iannacone, F. Sabba & G. Esposito. 2022. Simultaneous nitrification-denitrification in biofilm systems for wastewater treatment: Key factors, potential routes, and engineered applications. Bioresource Technology 361: 127702. DOI:10.1016/j.biortech.2022.127702
Doolittle, W. F. & R. T. Papke. 2006. Genomics and the bacterial species problem. Genome Biology 7 (9): 116. DOI:10.1186/gb-2006-7-9- 116
Duan, J., H. Fang, B. Su, J. Chen & J. Lin. 2015. Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater. Bioresource Technology 179: 421-428. DOI:10.1016/j.biortech.2014.12.057
Elser, J. J. 2011. A world awash with nitrogen. Science 334 (6062): 1504-1505. DOI:10.1126/science.1215567
Ferrera, I. & O. Sánchez. 2016. Insights into microbial diversity in wastewater treatment systems: how far have we come? Biotechnology Advances 34 (5): 790-802. DOI:10.1016/j.biotechadv.2016.04.003
Fierer, N., S. Ferrenberg, G. E. Flores, A. González, J. Kueneman, T. Legg, R.C. Lynch, D. McDonald, J.R. Mihaljevic, S.P. O’Neill, M.E. Rhodes, S.J. Song & W. A. Walters. 2012. From animalcules to an ecosystem: application of ecological concepts to the human microbiome. Annual Review of Ecology, Evolution, and Systematics 43: 137-155. DOI:10.1146/annurev-ecolsys-110411-160307
Flemming, H.-C., J. Wingender, U. Szewzyk, P. Steinberg, S. A. Rice & S. Kjelleberg. 2016. Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology 14 (9): 563-575. DOI:10.1038/nrmicro.2016.94
Garrity, G. M. & J. G. Holt. 2015. Nitrospirae phy. nov. In: Bergey’s Manual of Systematics of Archaea and Bacteria, John Wiley & Sons. Disponible en línea en: https://onlinelibrary.wiley.com/doi/ abs/10.1002/9781118960608
Gevers, D., F. M. Cohan, J. G. Lawrence, B. G. Spratt, T. Coenye, E. J. Feil, E. Stackebrandt, Y. Van de Peer, P. Vandame, F. L. Thompson & J. Swings. 2005. Re-evaluating prokaryotic species. Nature Reviews Microbiology 3 (9): 733-739. DOI:10.1038/nrmicro1236
Gilch, S., O. Meyer & I. Schmidt. 2009. A soluble form of ammonia monooxygenase in Nitrosomonas europaea. Biological Chemistry 390 (9): 863-873. DOI:10.1515/BC.2009.085
Goldford, J. E., N. Lu, D. Bajić, S. Estrela, M. Tikhonov, A. Sanchez-Gorostiaga, D. Segrè, P. Mehta & A. Sanchez. 2018. Emergent simplicity in microbial community assembly. Science 361 (6401): 469-474. DOI:10.1126/science.aat1168
González, P. J., C. Correia, I. Moura, C. D. Brondino & J. J. G. Moura. 2006. Bacterial nitrate reductases: molecular and biological aspects of nitrate reduction. Journal of Inorganic Biochemistry 100 (5-6): 1015-1023. DOI:10.1016/j.jinorgbio.2005.11.024
Hodgskiss, L. H., M. Melcher, M. Kerou, W. Chen, R. I. Ponce-Toledo, S. N. Savvides, S. Wienkoop & C. Schleper. 2023. Unexpected complexity of the ammonia monooxygenase in archaea. The ISME Journal 17: 588-599. DOI:10.1038/s41396-023-01367-3
Hommes, N. G., L. A. Sayavedra-Soto & D. J. Arp. 2003. Chemolithoorganotrophic growth of Nitrosomonas europaea on fructose. Journal of Bacteriology 185 (23): 6809-6814. DOI:10.1128/JB.185.23.6809- 6814.2003
Isobe, K. & N. Ohte. 2014. Ecological perspectives on microbes involved in N-cycling. Microbes and Environments 29 (1): 4-16. DOI:10.1264/ jsme2.me13159
Johnson, D. R., D. E. Helbling, T. K. Lee, J. Park, K. Fenner, H.-P. E. Kohler & M. Ackermann. 2015. Association of biodiversity with the rates of micropollutant biotransformations among full-scale wastewater treatment plant communities. Applied and Environmental Microbiology 81 (2): 666-675. DOI:10.1128/AEM.03286-14
Jones, C. M., D. R. H. Graf, D. Bru, L. Philippot & S. Hallin. 2013. The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. The ISME Journal 7 (2): 417-426. DOI:10.1038/ismej.2012.125
Junier, P., V. Molina, C. Dorador, O. Hadas, O.-S. Kim, T. Junier, K-P. Witzel & J. F. Imhoff. 2010. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Applied Microbiology and Biotechnology, 85 (3): 425-440. DOI:10.1007/s00253-009-2228-9
Karri, R. R., J. N. Sahu & V. Chimmiri. 2018. Critical review of abatement of ammonia from wastewater. Journal of Molecular Liquids 261: 21-31. DOI:10.1016/j.molliq.2018.03.120
Keeley, R. F., L. Rodriguez-Gonzalez, U. S. F. G. Class, G. E. Briggs, V. E. Frazier, P. A. Mancera, H. S. Manzer, S. J. Ergas & K. M. Scott. 2020. Degenerate PCR primers for assays to track steps of nitrogen metabolism by taxonomically diverse microorganisms in a variety of environments. Journal of Microbiological Methods 175: 105990. DOI:10.1016/j.mimet.2020.105990
Kerou, M., R. J. Eloy Alves & C. Schleper. 2016. Nitrososphaeria. In: Bergey’s Manual of Systematics of Archaea and Bacteria, John Wiley & Sons. Disponible en línea en: https://onlinelibrary.wiley.com/ doi/10.1002/9781118960608.cbm00055
Khadka, R., L. Clothier, L. Wang, C. K. Lim, M. G. Klotz & P. F. Dunfield. 2018. Evolutionary History of Copper Membrane Monooxygenases. Frontiers in Microbiology 9: 2493. DOI:10.3389/fmicb.2018.02493
Kits, K.D., C.J. Sedlacek, E.V. Lebedeva, P. Han, A. Bulaev, P. Pjevac, A. Daebeler, S. Romano, M. Albertsen, L.Y. Stein, H. Daims & M. Wagner. 2017. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549: 269-272. DOI:10.1038/nature23679
Kjeldal, H., L. Pell, A. Pommerening-Roser & J. L. Nielsen. 2014. Influence of p-cresol on the proteome of the autotrophic nitrifying bacterium Nitrosomonas eutropha C91. Archives of Microbiology 196 (7): 497-511. DOI:10.1007/s00203-014-0985-z
Konopka, A. 2009. What is microbial community ecology? The ISME Journal 3: 1223-1230. DOI:10.1038/ismej.2009.88
Kraft, B., M. Strous & H. E. Tegetmeyer. 2011. Microbial nitrate respiration - genes, enzymes and environmental distribution. Journal of Biotechnology 155 (1): 104-117. DOI:10.1016/j.jbiotec.2010.12.025
Kuenen, J. G. 2020. Anammox and beyond. Environmental Microbiology 22 (2): 525-536. DOI:10.1111/1462-2920.14904
Kuypers, M. M. M., H. K. Marchant & B. Kartal. 2018. The microbial nitrogen-cycling network. Nature Reviews Microbiology 16: 263-276. DOI:10.1038/nrmicro.2018.9
Lang, X., X. Chen, A. Xu, Z. Song, X. Wang & H. Wang. 2018. Variation of bacterial and archaeal community structures in a full-scale constructed wetlands for wastewater treatment. Archaea 2018: 9319345. DOI:10.1155/2018/9319345
Lee, C.C., M.W. Ribbe & Y. Hu. 2014. Cleaving the N,N triple bond: the transformation of dinitrogen to ammonia by nitrogenases. In: Kroneck, P. & M. Torres (Eds.). The metal-driven biogeochemistry of gaseous compounds in the environment. Metal ions in life sciences. Springer, Dordrecht, Vol. 14, pp. 147-176. DOI:10.1007/978- 94-017-9269-1_7
Lehnert, N., H. T. Dong, J. B. Harland, A. P. Hunt & C. J. White. 2018. Reversing nitrogen fixation. Nature Reviews Chemistry 2: 278-289. DOI:10.1038/s41570-018-0041-7
Lu, H., K. Chandran & D. Stensel. 2014. Microbial ecology of denitrification in biological wastewater treatment. Water Research 64: 237-254. DOI:10.1016/j.watres.2014.06.042
Lücker, S., M. Wagner, F. Maixner, E. Pelletier, H. Koch, B. Vacherie, T. Rattei, J.S.S. Damsté, E. Spieck, D. Le Paslier & H. Daims. 2010. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proceedings of the National Academy of Sciences of the United States of America 107 (30): 13479-13484. DOI:10.1073/pnas.1003860107
Ma, Y., J. L. Zilles & A. D. Kent. 2019. An evaluation of primers for detecting denitrifiers via their functional genes. Environmental Microbiology 21 (4): 1196-1210. DOI:10.1111/1462-2920.14555
Maddela, N. R., B. Sheng, S.Yuan, Z. Zhou, R. Villamar-Torres & F. Meng. 2019. Roles of quorum sensing in biological wastewater treatment: A critical review. Chemosphere, 221: 616-629. DOI:10.1016/j.chemosphere.2019.01.064
Madsen, J. S., S. J. Sørensen & M. Burmølle. 2018. Bacterial social interactions and the emergence of community-intrinsic properties. Current Opinion in Microbiology, 42: 104-109. DOI:10.1016/j. mib.2017.11.018
Matsumoto, Y., T. Tosha, A. V. Pisliakov, T. Hino, H. Sugimoto, S. Nagano, Y. Sugita & Y. Shiro. 2012. Crystal structure of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus. Nature Structural and Molecular Biology 19 (2): 238-245. DOI:10.1038/nsmb.2213
McMahon, K. D., H. G. Martin & P. Hugenholtz. 2007. Integrating ecology into biotechnology. Current Opinion in Biotechnology 18 (3): 287-292. DOI:10.1016/j.copbio.2007.04.007
Mehrani, M. J., D. Sobotka, P. Kowal, S. Ciesielski & J. Makinia. 2020. The occurrence and role of Nitrospira in nitrogen removal systems. Bioresource Technology 303: 122936. DOI:10.1016/j.biortech.2020.122936
Miralles-Robledillo, J. M., E. Bernabeu, M. Giani, E. Martínez-Serna, R. M. Martínez-Espinosa & C. Pire. 2021. Distribution of denitrification among haloarchaea: A comprehensive study. Microorganisms 9 (8): 1669. DOI:10.3390/microorganisms9081669
Musiani, F., V. Broll, E. Evangelisti & S. Ciurli. 2020. The model structure of the copper-dependent ammonia monooxygenase. Journal of Biological Inorganic Chemistry 25 (7): 995-1007. DOI:10.1007/s00775- 020-01820-0
Norton, J. M., J. J. Alzerreca, Y. Suwa & M. G. Klotz. 2002. Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Archives of Microbiology 177: 139-149. DOI:10.1007/ s00203-001-0369-z
Norton, J. M., M. G. Klotz, L. Y. Stein, D. J. Arp, P. J. Bottomley, P. S. G. Chain, L.J. Hauser, M.L. Land, F.W. Larimer, M.W. Shin & S. R. Starkenburg. 2008. Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Applied and Environmental Microbiology 74 (11): 3559-3572. DOI:10.1128/ AEM.02722-07
Oren, A., G. M. Garrity, C. T. Parker, M. Chuvochina & M. E. Trujillo. 2020. Lists of names of prokaryotic Candidatus taxa. International Journal of Systematic and Evolutionary Microbiology 70 (7): 3956-4042. DOI:10.1099/ijsem.0.003789
Overmann, J., S. Huang, U. Nübel, R. L. Hahnke & B. J. Tindall. 2019. Relevance of phenotypic information for the taxonomy of not-yet-cultured microorganisms. Systematic and Applied Microbiology 42 (1): 22-29. DOI:10.1016/j.syapm.2018.08.009
Pallen, M. J., A. Telatin & A. Oren. 2021. The next million names for Archaea and Bacteria. Trends in Microbiology 29 (4): 289–298. DOI:10.1016/j.tim.2020.10.009
Park, S.-J., A.-Ş. Andrei, P.-A. Bulzu, V. S. Kavagutti, R. Ghai & A. C. Mosier. 2020. Expanded diversity and metabolic versatility of marine nitrite-oxidizing bacteria revealed by cultivation- and genomics-based approaches. Applied and Environmental Microbiology 86 (22): e01667-20. DOI:10.1128/AEM.01667-20
Parks, D. H., M. Chuvochina, P.-A. Chaumeil, C. Rinke, A. J. Mussig & P. Hugenholtz. 2020. A complete domain-to-species taxonomy for Bacteria and Archaea. Nature Biotechnology 38 (9): 1079-1086. DOI:10.1038/s41587-020-0501-8
Parsons, C., E. E. Stüeken, C. J. Rosen, K. Mateos & R. E. Anderson. 2021. Radiation of nitrogen-metabolizing enzymes across the tree of life tracks environmental transitions in Earth history. Geobiology 19 (1): 18-34. DOI:10.1111/gbi.12419
Pérez-Rodríguez, I., Bohnert, K. A., Cuebas, M., Keddis, R. & Vetriani, C. 2013. Detection and phylogenetic analysis of the membrane-bound nitrate reductase (Nar) in pure cultures and microbial communities from deep-sea hydrothermal vents. FEMS Microbiology Ecology 86 (2): 256-267. DOI:10.1111/1574-6941.12158
Pester, M., F. Maixner, D. Berry, T. Rattei, H. Koch, S. Lücker, B. Nowka, A. Richter, E. Spieck, E. Lebedeva, A. Loy, M. Wagner & H. Daims. 2014. NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira. Environmental Microbiology 16 (10): 3055-3071. DOI:10.1111/1462-2920.12300
Petersen, D. G., S. J. Blazewicz, M. Firestone, D. J. Herman, M. Turetsky & Waldrop, M. 2012. Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environmental Microbiology 14 (4): 993-1008. DOI:10.1111/j.1462-2920.2011.02679.x
Pholchan, M. K., J. de C. Baptista, R. J. Davenport, W. T. Sloan & T. P. Curtis. 2013. Microbial community assembly, theory and rare functions. Frontiers in Microbiology 4: 68. DOI:10.3389/fmicb.2013.00068
Pilegaard, K. 2013. Processes regulating nitric oxide emissions from soils. Philosophical Transactions of the Royal Society B: Biological Sciences 368 (1621): 20130126. DOI:10.1098/rstb.2013.0126
Qin, H., B. Ji, S. Zhang & Z. Kong. 2018. Study on the bacterial and archaeal community structure and diversity of activated sludge from three wastewater treatment plants. Marine Pollution Bulletin 135: 801-807. DOI:10.1016/j.marpolbul.2018.08.010
Ren, H., Y.-C. Chen, X. T. Wang, G. T. F. Wong, A. L. Cohen, T. M. DeCarlo, M. A. Weigand, H-S. Mii & D. M. Sigman. 2017. 21st-century rise in anthropogenic nitrogen deposition on a remote coral reef. Science 356 (6339): 749-752. DOI:10.1126/science.aal3869
Rinaldo, S. & F. Cutruzzolà. 2007. Nitrite Reductases in Denitrification. In Biology of the Nitrogen Cycle. Elsevier, Amsterdam, The Netherlands, pp. 3755. DOI:10.1016/B978-044452857-5.50004-7
Rinke, C., M. Chuvochina, A. J. Mussig, P.-A. Chaumeil, D. W.Waite, W. B. Whitman, D. H. Parks & P. Hugenholtz. 2021. A standardized archaeal taxonomy for the Genome Taxonomy Database. Nature Microbiology 6 (7): 946-959. DOI:10.1038/s41564-021-00918-8
Sayavedra-Soto, L. A., B. Gvakharia, P. J. Bottomley, D. J. Arp & M. E. Dolan. 2010. Nitrification and degradation of halogenated hydrocarbons—a tenuous balance for ammonia-oxidizing bacteria. Applied Microbiology and Biotechnology 86 (2): 435-444. DOI:10.1007/ s00253-010-2454-1
Scheer, C., K. Fuchs, D. E. Pelster & K. Butterbach-Bahl. 2020. Estimating global terrestrial denitrification from measured N2 O: (N2 O + N2 ) product ratios. Current Opinion in Environmental Sustainability 47: 72-80. DOI:10.1016/j.cosust.2020.07.005
Schmidt, I. 2004. Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK- and NorB -deficient mutants. Microbiology 150 (12): 4107-4114. DOI:10.1099/mic.0.27382-0
Schoch CL, S. Ciufo, M. Domrachev, C. L. Hotton, S. Kannan, R. Khovanskaya, D. Leipe, R. Mcveigh, K. O’Neill, B. Robbertse, S. Sharma, V. Soussov, J. P. Sullivan, L. Sun, S. Turner & I. Karsch-Mizrachi. 2020. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database (Oxford). 2020: baaa062. DOI:10.1093/database/baaa062
Seitzinger, S., J. A. Harrison, J. K. Böhlke, A. F. Bouwman, R. Lowrance, B. Peterson, C. Tobias & G. Van Drecht. 2006. Denitrification across landscapes and waterscapes: a synthesis. Ecological Applications 16 (6): 2064-2090. DOI:10.1890/1051-0761(2006)016[2064:dalawa]2.0.co;2
Shahab, R. L., S. Brethauer, M. P. Davey, A. G. Smith, S. Vignolini, J. S. Luterbacher & M. H. Studer. 2020. A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose. Science 369 (6507): eabb1214. DOI:10.1126/science.abb1214
Sharma, B. & P. Shukla. 2020. Designing synthetic microbial communities for effectual bioremediation: A review. Biocatalysis and Biotransformation 38 (6): 405-414. DOI:10.1080/10242422.2020.1813727
Shiro, Y. 2012. Structure and function of bacterial nitric oxide reductases. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1817 (10): 1907-1913. DOI:10.1016/j.bbabio.2012.03.001
Silva, L. C. F., Lima, H. S., T. A. de O. Mendes, A. Sartoratto, M. P. Sousa, R. S. de Souza, S.O. de Paula, V. M. de Oliveira & C. C. Silva. 2020. Physicochemical characterization of Pseudomonas stutzeri UFV5 and analysis of its transcriptome under heterotrophic nitrification/aerobic denitrification pathway induction condition. Scientific Reports 10 (1): 2215. DOI:10.1038/s41598-020-59279-7
Soumare, A., A. G. Diedhiou, M. Thuita, M. Hafidi, Y. Ouhdouch, S. Gopalakrishnan & L. Kouisni. 2020. Exploiting biological nitrogen fixation: A route towards a sustainable agriculture. Plants (Basel) 9 (8): 1011. DOI:10.3390/plants9081011
Spieck, E. & E. Bock. 2015. Nitrifying bacteria. In Bergey’s Manual of Systematics of Archaea and Bacteria, John Wiley & Sons. Disponible en línea en: https://onlinelibrary.wiley.com/ doi/10.1002/9781118960608.bm00016
Starkenburg, S. R., D. J. Arp & P. J. Bottomley. 2008a. D-Lactate metabolism and the obligate requirement for CO2 during growth on nitrite by the facultative lithoautotroph Nitrobacter hamburgensis. Microbiology 154 (8): 2473-2481. DOI:10.1099/mic.0.2008/018085-0
Starkenburg, S. R., F. W. Larimer, L. Y. Stein, M. G. Klotz, P. S. G. Chain, L. A. Sayavedra-Soto, A. T. Poret-Peterson, M. E. Gentry, D. J. Arp, B. Ward & P. J. Bottomley. 2008b. Complete genome sequence of Nitrobacter hamburgensis X14 and comparative genomic analysis of species within the genus Nitrobacter. Applied and Environmental Microbiology 74 (9): 2852-2863. DOI:10.1128/AEM.02311-07
Stein, L. Y. & M. G. Klotz. 2016. The nitrogen cycle. Current Biology 26 (3): R94-R98. DOI:10.1016/j.cub.2015.12.021
Stevens, C. J. 2019. Nitrogen in the environment. Science 363 (6427): 578-580. DOI:10.1126/science.aav8215 Su, Q., A. R. Schittich, M. M. Jensen, H. Ng & B. F. Smets. 2021. Role of ammonia oxidation in organic micropollutant transformation during wastewater treatment: Insights from molecular, cellular, and community level observations. Environmental Science and Technology 55 (4): 2173-2188. DOI:10.1021/acs.est.0c06466
Takai, K. 2019. The nitrogen cycle: a large, fast, and mystifying cycle. Microbes and Environments 34 (3): 223-225. DOI:10.1264/jsme2. ME3403rh
Tolar, B. B., J. Herrmann, J. R. Bargar, H. van den Bedem, S. Wakatsuki & C. A. Francis. 2017. Integrated structural biology and molecular ecology of N-cycling enzymes from ammonia-oxidizing archaea. Environmental Microbiology Reports, 9 (5): 484-491. DOI:10.1111/1758- 2229.12567
Torregrosa-Crespo, J., P. González-Torres, V. Bautista, J. M. Esclapez, C. Pire, M. Camacho, M. J. Bonete, D. J. Richardson, N. J. Watmough & R. M. Martínez-Espinosa. 2017. Analysis of multiple haloarchaeal genomes suggests that the quinone-dependent respiratory nitric oxide reductase is an important source of nitrous oxide in hypersaline environments. Environmental Microbiology Reports 9 (6): 788-796. DOI:10.1111/1758-2229.12596
Trego, A. C., S. Mills & G. Collins. 2021. Granular biofilms: function, application, and new trends as model microbial communities. Critical Reviews in Environmental Science and Technology 51 (15): 1702-1725. DOI:10.1080/10643389.2020.1769433
Vajrala, N., W. Martens-Habbena, L. A. Sayavedra-Soto, A. Schauer, P. J. Bottomley, D. A. Stahl & D. J. Arp. 2013. Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea. Proceedings of the National Academy of Sciences 110 (3): 1006- 1011. DOI:10.1073/pnas.1214272110
Vijayan, A., R. K. Vattiringal Jayadradhan, D. Pillai, P. Prasannan Geetha, V. Joseph & B. S. Isaac Sarojini. 2021. Nitrospira as versatile nitrifiers: Taxonomy, ecophysiology, genome characteristics, growth, and metabolic diversity. Journal of Basic Microbiology 61 (2): 88-109. DOI:10.1002/jobm.202000485
Waite, D. W., M. Chuvochina, C. Pelikan, D. H. Parks, P. Yilmaz, M. Wagner, A. Loy, T. Naganuma, R. Nakai, W. B. Whitman, M. W. Hahn, J. Kuever & P. Hugenholtz. 2020. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. International Journal of Systematic and Evolutionary Microbiology 70 (11): 5972-6016. DOI:10.1099/ijsem.0.004213
Wang, S., C. Liu, X. Wang, D. Yuan & G. Zhu. 2020a. Dissimilatory nitrate reduction to ammonium (DNRA) in traditional municipal wastewater treatment plants in China: widespread but low contribution. Water Research 179: 115877. DOI:10.1016/j.watres.2020.115877
Wang, S., Y. Pi, Y. Song, Y. Jiang, L. Zhou, W. Liu & G. Zhu. 2020b. Hotspot of dissimilatory nitrate reduction to ammonium (DNRA) process in freshwater sediments of riparian zones. Water Research 173: 115539. DOI:10.1016/j.watres.2020.115539
Wang, Z., W. Li, H. Li, W. Zheng & F. Guo. 2020c. Phylogenomics of Rhodocyclales and its distribution in wastewater treatment systems. Scientific Reports 10 (1): 3883. DOI:10.1038/s41598-020-60723-x
Wei, W., K. Isobe, T. Nishizawa, L. Zhu, Y. Shiratori, N. Ohte, K. Koba, S. Otsuka & K. Senoo. 2015. Higher diversity and abundance of denitrifying microorganisms in environments than considered previously. The ISME Journal 9 (9): 1954-1965. DOI:10.1038/ismej.2015.9
Weralupitiya, C., R. Wanigatunge, S. Joseph, B. C. L. Athapattu, T.-H. Lee, J. K. Biswas, M. P. Ginige, S. S. Lam, P. S. Kumar & M. Vithanage. 2021. Anammox bacteria in treating ammonium rich wastewater: Recent perspective and appraisal. Bioresource Technology 334: 125240. DOI:10.1016/j.biortech.2021.125240
Widder, S., R. J. Allen, T. Pfeiffer, T. P. Curtis, C. Wiuf, W. T. Sloan, O. X. Cordero, S.P. Brown, B. Momeni, W. Shou, H. Kettle, H. J. Flint, A. F. Hass, B. Laroche, J.-U. Kreft, P. B. Rainey, S. Freilich, S. Schuster, K. Milferstedt, J. R. van der Meer, T. Groβkopf, J. Huisman, A. Free, C. Picioreanu, C. Quince, I. Klapper, S. Labarthe, B. F. Smets, H. Wang, Isaac Newton Institute Fellows & O. S. Soyer. 2016. Challenges in microbial ecology: building predictive understanding of community function and dynamics. The ISME Journal 10 (11): 2557-2568. DOI:10.1038/ismej.2016.45
Wittorf, L., C. M. Jones, G. Bonilla-Rosso & S. Hallin. 2018. Expression of nirK and nirS genes in two strains of Pseudomonas stutzeri harbouring both types of NO-forming nitrite reductases. Research in Microbiology 169 (6): 343-347. DOI:10.1016/j.resmic.2018.04.010
Wu, L., X. Chen, W. Wei, Y. Liu, D. Wang & B.-J. Ni. 2020. A Critical Review on Nitrous Oxide Production by Ammonia-Oxidizing Archaea. Environmental Science and Technology 54 (15): 9175-9190. DOI:10.1021/ acs.est.0c03948
Xia, L., X. Li, W. Fan & J. Wang. 2020. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge. Bioresource Technology 301: 122749. DOI:10.1016/j.biortech.2020.122749
Xu, S., X. Wu & H. Lu. 2021. Overlooked nitrogen-cycling microorganisms in biological wastewater treatment. Frontiers of Environmental Science and Engineering, 15 (6): 133. DOI:10.1007/s11783-021- 1426-2
Yin, Z., X. Bi & C. Xu. 2018. Ammonia-Oxidizing Archaea (AOA) Play with Ammonia-Oxidizing Bacteria (AOB) in Nitrogen Removal from Wastewater. Archaea, 2018: 8429145. DOI:10.1155/2018/8429145
Yu, R. & K. Chandran. 2010. Strategies of Nitrosomonas europaea 19718 to counter low dissolved oxygen and high nitrite concentrations. BMC Microbiology 10: 70. DOI:10.1186/1471-2180-10-70
Zehr, J. P. & D. G. Capone. 2020. Changing perspectives in marine nitrogen fixation. Science 368 (6492): eaay9514. DOI:10.1126/science. aay9514
Zhao, B., D. Y. Cheng, P. Tan, Q. An & J. S. Guo. 2018. Characterization of an aerobic denitrifier Pseudomonas stutzeri strain XL-2 to achieve efficient nitrate removal. Bioresource Technology 250: 564-573. DOI:10.1016/j.biortech.2017.11.038
Zheng, M., S. He, Y. Feng, M. Wang, Y.-X. Liu, C. Dang & J. Wang. 2021. Active ammonia-oxidizing bacteria and archaea in wastewater treatment systems. Journal of Environmental Sciences 102: 273-282. DOI:10.1016/j.jes.2020.09.039
Zheng, M., G. Mu, A. Zhang, J. Wang, F. Chang, J. Niu, X. Wang, T. Gao & Z. Zhao. 2022. Predominance of comammox bacteria among ammonia oxidizers under low dissolved oxygen condition. Chemosphere 308 (Pt 3): 136436. DOI:10.1016/j.chemosphere.2022.136436
Zumft, W. G. 1997. Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Reviews 61 (4): 533-616. DOI:10.1128/mmbr.61.4.533-616.1997
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, HIDROBIOLÓGICA reconoce y respeta el derecho moral de los autores, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Publicar en la revista HIDROBIOLÓGICA tiene un costo de recuperación de $500 pesos mexicanos por página en blanco y negro (aproximadamente 29 dólares americanos) y $1000 pesos por página a color (aproximadamente 58 dólares americanos).
Todos los textos publicados por HIDROBIOLÓGICA sin excepción se distribuyen amparados bajo la licencia Creative Commons 4.0Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en HIDROBIOLÓGICA (por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en HIDROBIOLÓGICA.
Para todo lo anterior, el o los autor(es) deben remitir el formato de Carta-Cesión de la Propiedad de los Derechos de la primera publicación debidamente requisitado y firmado por el autor(es). Este formato se puede enviar por correo electrónico en archivo pdf al correo: enlacerebvistahidrobiológica@gmail.com; rehb@xanum.uam.mx (Carta-Cesión de Propiedad de Derechos de Autor).
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.