Diversidad y flexibilidad metabólica de consorcios nitrificantes y desnitrificantes usados en el tratamiento de aguas residuales

Autores/as

  • José Juan Ramírez-Muñoz UAM-Iztapalapa
  • Omar Oltehua-López UAM-Iztapalapa
  • Flor de María Cuervo-López UAM-Iztapalapa
  • Anne-Claire Texier Departamento de Biotecnología, UAM-Iztapalapa

Palabras clave:

Ciclo del nitrógeno, consorcio, diversidad y flexibilidad metabólica, proceso desnitrificante, proceso nitrificante

Resumen

Antecedentes. Los procesos de la nitrificación y desnitrificación forman parte del ciclo biogeoquímico del nitrógeno. Los microorganismos que los llevan a cabo son empleados en los sistemas dedicados al tratamiento de aguas residuales para eliminar un contaminante muy común; el amonio (NH4 +), y liberar nitrógeno molecular (N2 ). Objetivo. Mostrar la diversidad y flexibilidad metabólica de consorcios nitrificantes y desnitrificantes usados en la eliminación de nitrógeno de aguas residuales. Resultados. En estos microorganismos taxonómicamente diversos, las bacterias son las mejor estudiadas. Se las divide y nombra según el proceso principal que realizan. Aunque en realidad gracias a los genes que comparten, pueden presentar una diversidad y flexibilidad metabólica, que las capacita para sobrevivir en condiciones cambiantes y con funciones distintas del proceso que canónicamente se les atribuye. Los genes característicos de estos procesos son empleados como marcadores moleculares en estudios de comunidades. Sin embargo, taxones conocidos canónicamente como nitrificantes pueden tener genes funcionales propios del proceso desnitrificante. Microorganismos catalogados como típicamente desnitrificantes pueden tener genes funcionales del proceso nitrificante. Los consorcios (flóculos, gránulos y biopelículas) empleados en la eliminación de NH4 + son un ejemplo de comunidades que pueden tener capacidades superiores o distintas de las que tienen sus integrantes individualmente. Conclusiones. La presente revisión conjunta información fisiológica, genética y ecológica que contribuye a entender mejor la gran diversidad y flexibilidad metabólica de los consorcios nitrificantes y desnitrificantes. Se destaca que, en los sistemas artificiales, un mayor conocimiento de los taxones participantes, así como de sus relaciones tróficas, metabólicas y de comunicación posibilitaría un mejor control de los procesos nitrificante y desnitrificante para que estos sean más eficientes y estables.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahmed, M., M. Rauf, Z. Mukhtar & N. A. Saeed. 2017. Excessive use of nitrogenous fertilizers: an unawareness causing serious threats to environment and human health. Environmental Science and Pollution Research 24: 26983-26987. DOI:10.1007/s11356-017-0589-7

Alvarez, L., C. Bricio, M. J. Gómez & J. Berenguer. 2011. Lateral transfer of the denitrification pathway genes among Thermus thermophilus strains. Applied and Environmental Microbiology 77 (4): 1352-1358. DOI:10.1128/AEM.02048-10

Arnoldi, J. F., M. Loreau & B. Haegeman. 2019. The inherent multidimensionality of temporal variability: how common and rare species shape stability patterns. Ecology Letters 22 (10): 1557-1567. DOI:10.1111/ele.13345

Asamoto, C. K., K. R. Rempfert, V. H. Luu, A. D. Younkin & S. H. Kopf. 2021. Enzyme-Specific Coupling of Oxygen and Nitrogen Isotope Fractionation of the Nap and Nar Nitrate Reductases. Environmental Science and Technology 55 (8): 5537-5546. DOI:10.1021/acs. est.0c07816

Awolusi, O. O., S. K. S. Kumari & F. Bux. 2015. Ecophysiology of nitrifying communities in membrane bioreactors. International Journal of Environmental Science and Technology 12 (2): 747-762. DOI:10.1007/ s13762-014-0551-x

Beeckman, F., H. Motte & T. Beeckman. 2018. Nitrification in agricultural soils: impact, actors and mitigation. Current Opinion in Biotechnology 50: 166-173. DOI:10.1016/j.copbio.2018.01.014

Bernabeu, E., J. M. Miralles-Robledillo, M. Giani, E. Valdés, R. M. Martínez-Espinosa, & C. Pire. 2021. In silico analysis of the enzymes involved in haloarchaeal denitrification. Biomolecules 11 (7): 1-22. DOI:10.3390/biom11071043

Biswas, T., S. Banerjee, A. Saha, A. Bhattacharya, C. Chanda, L. M. Gantayet, P. Bhadury & S. R. Chaudhuri. 2022. Bacterial consortium based petrochemical wastewater treatment: from strain isolation to industrial effluent treatment. Environmental Advances 7: 100132. DOI:10.1016/j.envadv.2021.100132

Bock, E. 1976. Growth of Nitrobacter in the presence of organic matter. II. Chemoorganotrophic growth of Nitrobacter agilis. Archives of Microbiology 108 (3): 305-312. DOI:10.1007/BF00454857

Bock, E., H. Koops, U. C. Möller & M. Rudert. 1990. A new facultatively nitrite oxidizing bacterium, Nitrobacter vulgaris sp. nov. Archives of Microbiology 153: 105-110. DOI:10.1007/BF00247805

Boyle, E. 2017. Nitrogen pollution knows no bounds. Science 356 (6339): 700-701. DOI:10.1126/science.aan3242

Brenner, K., L. You & F. H. Arnold. 2008. Engineering microbial consortia: a new frontier in synthetic biology. Trends in Biotechnology 26 (9): 483-489. DOI:10.1016/j.tibtech.2008.05.004

Brockhurst, M. A., A. Buckling, D. Racey & A. Gardner. 2008. Resource supply and the evolution of public-goods cooperation in bacteria. BMC Biology 6: 20. DOI:10.1186/1741-7007-6-20

Buratti, S., C. E. Girometta, R. M. Baiguera, B. Barucco, M. Bernardi, G. De Girolamo, M. Malgaretti, D. Olivia, A. M. Picco & E. Savino. 2022. Fungal Diversity in Two Wastewater Treatment Plants in North Italy. Microorganisms 10 (6): 1096. DOI:10.3390/microorganisms10061096

Cai, Y. M. 2020. Non-surface Attached Bacterial Aggregates: A ubiquitous third lifestyle. Frontiers in Microbiology 11:557035. DOI:10.3389/ fmicb.2020.557035

Caranto, J. D. & K. M. Lancaster. 2017. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. Proceedings of the National Academy of Sciences of the United States of America 114 (31): 8217-8222. DOI:10.1073/ pnas.1704504114

Carreira, C., S. R. Pauleta & I. Moura. 2017. The catalytic cycle of nitrous oxide reductase — The enzyme that catalyzes the last step of denitrification. Journal of Inorganic Biochemistry 177: 423-434. DOI:10.1016/j.jinorgbio.2017.09.007

Castellano-Hinojosa, A., P. Maza-Márquez, J. González-López & B. Rodelas. 2020. Influence of operation parameters on the shaping of the denitrification communities in full-scale municipal sewage treatment plants. Journal of Water Process Engineering 37: 101465. DOI:10.1016/j.jwpe.2020.101465

Chain, P., J. Lamerdin, F. Larimer, W. Regala, V. Lao, M. Land, L. Hauser, A. Hooper, M. Klotz, J. Norton, L. Sayavedra-Soto, D. Arciero, N. Hommes, M. Whittaker & D. Arp. 2003. Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. Journal of Bacteriology 185 (9): 2759-2773. DOI:10.1128/Jb.185.9.2759-2773.2003

Congestri, R., S. Savio, S. Farrotti, A. Amati, K. Krasojevic, N. Perini, F. Costa & L. Migliore. 2020. Developing a microbial consortium for removing nutrients in dishwasher wastewater: towards a biofilter for its up-cycling. Water Science and Technology 82 (6): 1142-1154. DOI:10.2166/wst.2020.325

Conthe, M., P. Lycus, M. Ø. Arntzen, A. Ramos da Silva, Å. Frostegård, L. R. Bakken, R. Kleerebezem & M. C. M. van Loosdrecht. 2019. Denitrification as an N2 O sink. Water Research 151: 381-387. DOI:10.1016/j. watres.2018.11.087

Cordero, O. X. & M. S. Datta. 2016. Microbial interactions and community assembly at microscales. Current Opinion in Microbiology 31: 227-234. DOI:10.1016/j.mib.2016.03.015 Daims, H., E. V. Lebedeva, P. Pjevac, P. Han, C. Herbold, M. Albertsen, M. Jehmlich, M. Palatinszky, J. Vierheilig, A. Bulaev, R.H. Kirkegaard, M. von Bergen, T. Rattei, B. Bendinger, P.H. Nielsen & M. Wagner. 2015. Complete nitrification by Nitrospira bacteria. Nature 528 (7583): 504-509. DOI:10.1038/nature16461

Daims, H., S. Lücker & M. Wagner. 2016. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends in Microbiology 24 (9): 699-712. DOI:10.1016/j.tim.2016.05.004

Dangi, A. K., B. Sharma, R. T. Hill & P. Shukla. 2019. Bioremediation through microbes: systems biology and metabolic engineering approach. Critical Reviews in Biotechnology 39 (1): 79-98. DOI:10.1080/073 88551.2018.1500997

Di Capua, F., F. Iannacone, F. Sabba & G. Esposito. 2022. Simultaneous nitrification-denitrification in biofilm systems for wastewater treatment: Key factors, potential routes, and engineered applications. Bioresource Technology 361: 127702. DOI:10.1016/j.biortech.2022.127702

Doolittle, W. F. & R. T. Papke. 2006. Genomics and the bacterial species problem. Genome Biology 7 (9): 116. DOI:10.1186/gb-2006-7-9- 116

Duan, J., H. Fang, B. Su, J. Chen & J. Lin. 2015. Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater. Bioresource Technology 179: 421-428. DOI:10.1016/j.biortech.2014.12.057

Elser, J. J. 2011. A world awash with nitrogen. Science 334 (6062): 1504-1505. DOI:10.1126/science.1215567

Ferrera, I. & O. Sánchez. 2016. Insights into microbial diversity in wastewater treatment systems: how far have we come? Biotechnology Advances 34 (5): 790-802. DOI:10.1016/j.biotechadv.2016.04.003

Fierer, N., S. Ferrenberg, G. E. Flores, A. González, J. Kueneman, T. Legg, R.C. Lynch, D. McDonald, J.R. Mihaljevic, S.P. O’Neill, M.E. Rhodes, S.J. Song & W. A. Walters. 2012. From animalcules to an ecosystem: application of ecological concepts to the human microbiome. Annual Review of Ecology, Evolution, and Systematics 43: 137-155. DOI:10.1146/annurev-ecolsys-110411-160307

Flemming, H.-C., J. Wingender, U. Szewzyk, P. Steinberg, S. A. Rice & S. Kjelleberg. 2016. Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology 14 (9): 563-575. DOI:10.1038/nrmicro.2016.94

Garrity, G. M. & J. G. Holt. 2015. Nitrospirae phy. nov. In: Bergey’s Manual of Systematics of Archaea and Bacteria, John Wiley & Sons. Disponible en línea en: https://onlinelibrary.wiley.com/doi/ abs/10.1002/9781118960608

Gevers, D., F. M. Cohan, J. G. Lawrence, B. G. Spratt, T. Coenye, E. J. Feil, E. Stackebrandt, Y. Van de Peer, P. Vandame, F. L. Thompson & J. Swings. 2005. Re-evaluating prokaryotic species. Nature Reviews Microbiology 3 (9): 733-739. DOI:10.1038/nrmicro1236

Gilch, S., O. Meyer & I. Schmidt. 2009. A soluble form of ammonia monooxygenase in Nitrosomonas europaea. Biological Chemistry 390 (9): 863-873. DOI:10.1515/BC.2009.085

Goldford, J. E., N. Lu, D. Bajić, S. Estrela, M. Tikhonov, A. Sanchez-Gorostiaga, D. Segrè, P. Mehta & A. Sanchez. 2018. Emergent simplicity in microbial community assembly. Science 361 (6401): 469-474. DOI:10.1126/science.aat1168

González, P. J., C. Correia, I. Moura, C. D. Brondino & J. J. G. Moura. 2006. Bacterial nitrate reductases: molecular and biological aspects of nitrate reduction. Journal of Inorganic Biochemistry 100 (5-6): 1015-1023. DOI:10.1016/j.jinorgbio.2005.11.024

Hodgskiss, L. H., M. Melcher, M. Kerou, W. Chen, R. I. Ponce-Toledo, S. N. Savvides, S. Wienkoop & C. Schleper. 2023. Unexpected complexity of the ammonia monooxygenase in archaea. The ISME Journal 17: 588-599. DOI:10.1038/s41396-023-01367-3

Hommes, N. G., L. A. Sayavedra-Soto & D. J. Arp. 2003. Chemolithoorganotrophic growth of Nitrosomonas europaea on fructose. Journal of Bacteriology 185 (23): 6809-6814. DOI:10.1128/JB.185.23.6809- 6814.2003

Isobe, K. & N. Ohte. 2014. Ecological perspectives on microbes involved in N-cycling. Microbes and Environments 29 (1): 4-16. DOI:10.1264/ jsme2.me13159

Johnson, D. R., D. E. Helbling, T. K. Lee, J. Park, K. Fenner, H.-P. E. Kohler & M. Ackermann. 2015. Association of biodiversity with the rates of micropollutant biotransformations among full-scale wastewater treatment plant communities. Applied and Environmental Microbiology 81 (2): 666-675. DOI:10.1128/AEM.03286-14

Jones, C. M., D. R. H. Graf, D. Bru, L. Philippot & S. Hallin. 2013. The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. The ISME Journal 7 (2): 417-426. DOI:10.1038/ismej.2012.125

Junier, P., V. Molina, C. Dorador, O. Hadas, O.-S. Kim, T. Junier, K-P. Witzel & J. F. Imhoff. 2010. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Applied Microbiology and Biotechnology, 85 (3): 425-440. DOI:10.1007/s00253-009-2228-9

Karri, R. R., J. N. Sahu & V. Chimmiri. 2018. Critical review of abatement of ammonia from wastewater. Journal of Molecular Liquids 261: 21-31. DOI:10.1016/j.molliq.2018.03.120

Keeley, R. F., L. Rodriguez-Gonzalez, U. S. F. G. Class, G. E. Briggs, V. E. Frazier, P. A. Mancera, H. S. Manzer, S. J. Ergas & K. M. Scott. 2020. Degenerate PCR primers for assays to track steps of nitrogen metabolism by taxonomically diverse microorganisms in a variety of environments. Journal of Microbiological Methods 175: 105990. DOI:10.1016/j.mimet.2020.105990

Kerou, M., R. J. Eloy Alves & C. Schleper. 2016. Nitrososphaeria. In: Bergey’s Manual of Systematics of Archaea and Bacteria, John Wiley & Sons. Disponible en línea en: https://onlinelibrary.wiley.com/ doi/10.1002/9781118960608.cbm00055

Khadka, R., L. Clothier, L. Wang, C. K. Lim, M. G. Klotz & P. F. Dunfield. 2018. Evolutionary History of Copper Membrane Monooxygenases. Frontiers in Microbiology 9: 2493. DOI:10.3389/fmicb.2018.02493

Kits, K.D., C.J. Sedlacek, E.V. Lebedeva, P. Han, A. Bulaev, P. Pjevac, A. Daebeler, S. Romano, M. Albertsen, L.Y. Stein, H. Daims & M. Wagner. 2017. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549: 269-272. DOI:10.1038/nature23679

Kjeldal, H., L. Pell, A. Pommerening-Roser & J. L. Nielsen. 2014. Influence of p-cresol on the proteome of the autotrophic nitrifying bacterium Nitrosomonas eutropha C91. Archives of Microbiology 196 (7): 497-511. DOI:10.1007/s00203-014-0985-z

Konopka, A. 2009. What is microbial community ecology? The ISME Journal 3: 1223-1230. DOI:10.1038/ismej.2009.88

Kraft, B., M. Strous & H. E. Tegetmeyer. 2011. Microbial nitrate respiration - genes, enzymes and environmental distribution. Journal of Biotechnology 155 (1): 104-117. DOI:10.1016/j.jbiotec.2010.12.025

Kuenen, J. G. 2020. Anammox and beyond. Environmental Microbiology 22 (2): 525-536. DOI:10.1111/1462-2920.14904

Kuypers, M. M. M., H. K. Marchant & B. Kartal. 2018. The microbial nitrogen-cycling network. Nature Reviews Microbiology 16: 263-276. DOI:10.1038/nrmicro.2018.9

Lang, X., X. Chen, A. Xu, Z. Song, X. Wang & H. Wang. 2018. Variation of bacterial and archaeal community structures in a full-scale constructed wetlands for wastewater treatment. Archaea 2018: 9319345. DOI:10.1155/2018/9319345

Lee, C.C., M.W. Ribbe & Y. Hu. 2014. Cleaving the N,N triple bond: the transformation of dinitrogen to ammonia by nitrogenases. In: Kroneck, P. & M. Torres (Eds.). The metal-driven biogeochemistry of gaseous compounds in the environment. Metal ions in life sciences. Springer, Dordrecht, Vol. 14, pp. 147-176. DOI:10.1007/978- 94-017-9269-1_7

Lehnert, N., H. T. Dong, J. B. Harland, A. P. Hunt & C. J. White. 2018. Reversing nitrogen fixation. Nature Reviews Chemistry 2: 278-289. DOI:10.1038/s41570-018-0041-7

Lu, H., K. Chandran & D. Stensel. 2014. Microbial ecology of denitrification in biological wastewater treatment. Water Research 64: 237-254. DOI:10.1016/j.watres.2014.06.042

Lücker, S., M. Wagner, F. Maixner, E. Pelletier, H. Koch, B. Vacherie, T. Rattei, J.S.S. Damsté, E. Spieck, D. Le Paslier & H. Daims. 2010. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proceedings of the National Academy of Sciences of the United States of America 107 (30): 13479-13484. DOI:10.1073/pnas.1003860107

Ma, Y., J. L. Zilles & A. D. Kent. 2019. An evaluation of primers for detecting denitrifiers via their functional genes. Environmental Microbiology 21 (4): 1196-1210. DOI:10.1111/1462-2920.14555

Maddela, N. R., B. Sheng, S.Yuan, Z. Zhou, R. Villamar-Torres & F. Meng. 2019. Roles of quorum sensing in biological wastewater treatment: A critical review. Chemosphere, 221: 616-629. DOI:10.1016/j.chemosphere.2019.01.064

Madsen, J. S., S. J. Sørensen & M. Burmølle. 2018. Bacterial social interactions and the emergence of community-intrinsic properties. Current Opinion in Microbiology, 42: 104-109. DOI:10.1016/j. mib.2017.11.018

Matsumoto, Y., T. Tosha, A. V. Pisliakov, T. Hino, H. Sugimoto, S. Nagano, Y. Sugita & Y. Shiro. 2012. Crystal structure of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus. Nature Structural and Molecular Biology 19 (2): 238-245. DOI:10.1038/nsmb.2213

McMahon, K. D., H. G. Martin & P. Hugenholtz. 2007. Integrating ecology into biotechnology. Current Opinion in Biotechnology 18 (3): 287-292. DOI:10.1016/j.copbio.2007.04.007

Mehrani, M. J., D. Sobotka, P. Kowal, S. Ciesielski & J. Makinia. 2020. The occurrence and role of Nitrospira in nitrogen removal systems. Bioresource Technology 303: 122936. DOI:10.1016/j.biortech.2020.122936

Miralles-Robledillo, J. M., E. Bernabeu, M. Giani, E. Martínez-Serna, R. M. Martínez-Espinosa & C. Pire. 2021. Distribution of denitrification among haloarchaea: A comprehensive study. Microorganisms 9 (8): 1669. DOI:10.3390/microorganisms9081669

Musiani, F., V. Broll, E. Evangelisti & S. Ciurli. 2020. The model structure of the copper-dependent ammonia monooxygenase. Journal of Biological Inorganic Chemistry 25 (7): 995-1007. DOI:10.1007/s00775- 020-01820-0

Norton, J. M., J. J. Alzerreca, Y. Suwa & M. G. Klotz. 2002. Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Archives of Microbiology 177: 139-149. DOI:10.1007/ s00203-001-0369-z

Norton, J. M., M. G. Klotz, L. Y. Stein, D. J. Arp, P. J. Bottomley, P. S. G. Chain, L.J. Hauser, M.L. Land, F.W. Larimer, M.W. Shin & S. R. Starkenburg. 2008. Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Applied and Environmental Microbiology 74 (11): 3559-3572. DOI:10.1128/ AEM.02722-07

Oren, A., G. M. Garrity, C. T. Parker, M. Chuvochina & M. E. Trujillo. 2020. Lists of names of prokaryotic Candidatus taxa. International Journal of Systematic and Evolutionary Microbiology 70 (7): 3956-4042. DOI:10.1099/ijsem.0.003789

Overmann, J., S. Huang, U. Nübel, R. L. Hahnke & B. J. Tindall. 2019. Relevance of phenotypic information for the taxonomy of not-yet-cultured microorganisms. Systematic and Applied Microbiology 42 (1): 22-29. DOI:10.1016/j.syapm.2018.08.009

Pallen, M. J., A. Telatin & A. Oren. 2021. The next million names for Archaea and Bacteria. Trends in Microbiology 29 (4): 289–298. DOI:10.1016/j.tim.2020.10.009

Park, S.-J., A.-Ş. Andrei, P.-A. Bulzu, V. S. Kavagutti, R. Ghai & A. C. Mosier. 2020. Expanded diversity and metabolic versatility of marine nitrite-oxidizing bacteria revealed by cultivation- and genomics-based approaches. Applied and Environmental Microbiology 86 (22): e01667-20. DOI:10.1128/AEM.01667-20

Parks, D. H., M. Chuvochina, P.-A. Chaumeil, C. Rinke, A. J. Mussig & P. Hugenholtz. 2020. A complete domain-to-species taxonomy for Bacteria and Archaea. Nature Biotechnology 38 (9): 1079-1086. DOI:10.1038/s41587-020-0501-8

Parsons, C., E. E. Stüeken, C. J. Rosen, K. Mateos & R. E. Anderson. 2021. Radiation of nitrogen-metabolizing enzymes across the tree of life tracks environmental transitions in Earth history. Geobiology 19 (1): 18-34. DOI:10.1111/gbi.12419

Pérez-Rodríguez, I., Bohnert, K. A., Cuebas, M., Keddis, R. & Vetriani, C. 2013. Detection and phylogenetic analysis of the membrane-bound nitrate reductase (Nar) in pure cultures and microbial communities from deep-sea hydrothermal vents. FEMS Microbiology Ecology 86 (2): 256-267. DOI:10.1111/1574-6941.12158

Pester, M., F. Maixner, D. Berry, T. Rattei, H. Koch, S. Lücker, B. Nowka, A. Richter, E. Spieck, E. Lebedeva, A. Loy, M. Wagner & H. Daims. 2014. NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira. Environmental Microbiology 16 (10): 3055-3071. DOI:10.1111/1462-2920.12300

Petersen, D. G., S. J. Blazewicz, M. Firestone, D. J. Herman, M. Turetsky & Waldrop, M. 2012. Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environmental Microbiology 14 (4): 993-1008. DOI:10.1111/j.1462-2920.2011.02679.x

Pholchan, M. K., J. de C. Baptista, R. J. Davenport, W. T. Sloan & T. P. Curtis. 2013. Microbial community assembly, theory and rare functions. Frontiers in Microbiology 4: 68. DOI:10.3389/fmicb.2013.00068

Pilegaard, K. 2013. Processes regulating nitric oxide emissions from soils. Philosophical Transactions of the Royal Society B: Biological Sciences 368 (1621): 20130126. DOI:10.1098/rstb.2013.0126

Qin, H., B. Ji, S. Zhang & Z. Kong. 2018. Study on the bacterial and archaeal community structure and diversity of activated sludge from three wastewater treatment plants. Marine Pollution Bulletin 135: 801-807. DOI:10.1016/j.marpolbul.2018.08.010

Ren, H., Y.-C. Chen, X. T. Wang, G. T. F. Wong, A. L. Cohen, T. M. DeCarlo, M. A. Weigand, H-S. Mii & D. M. Sigman. 2017. 21st-century rise in anthropogenic nitrogen deposition on a remote coral reef. Science 356 (6339): 749-752. DOI:10.1126/science.aal3869

Rinaldo, S. & F. Cutruzzolà. 2007. Nitrite Reductases in Denitrification. In Biology of the Nitrogen Cycle. Elsevier, Amsterdam, The Netherlands, pp. 3755. DOI:10.1016/B978-044452857-5.50004-7

Rinke, C., M. Chuvochina, A. J. Mussig, P.-A. Chaumeil, D. W.Waite, W. B. Whitman, D. H. Parks & P. Hugenholtz. 2021. A standardized archaeal taxonomy for the Genome Taxonomy Database. Nature Microbiology 6 (7): 946-959. DOI:10.1038/s41564-021-00918-8

Sayavedra-Soto, L. A., B. Gvakharia, P. J. Bottomley, D. J. Arp & M. E. Dolan. 2010. Nitrification and degradation of halogenated hydrocarbons—a tenuous balance for ammonia-oxidizing bacteria. Applied Microbiology and Biotechnology 86 (2): 435-444. DOI:10.1007/ s00253-010-2454-1

Scheer, C., K. Fuchs, D. E. Pelster & K. Butterbach-Bahl. 2020. Estimating global terrestrial denitrification from measured N2 O: (N2 O + N2 ) product ratios. Current Opinion in Environmental Sustainability 47: 72-80. DOI:10.1016/j.cosust.2020.07.005

Schmidt, I. 2004. Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK- and NorB -deficient mutants. Microbiology 150 (12): 4107-4114. DOI:10.1099/mic.0.27382-0

Schoch CL, S. Ciufo, M. Domrachev, C. L. Hotton, S. Kannan, R. Khovanskaya, D. Leipe, R. Mcveigh, K. O’Neill, B. Robbertse, S. Sharma, V. Soussov, J. P. Sullivan, L. Sun, S. Turner & I. Karsch-Mizrachi. 2020. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database (Oxford). 2020: baaa062. DOI:10.1093/database/baaa062

Seitzinger, S., J. A. Harrison, J. K. Böhlke, A. F. Bouwman, R. Lowrance, B. Peterson, C. Tobias & G. Van Drecht. 2006. Denitrification across landscapes and waterscapes: a synthesis. Ecological Applications 16 (6): 2064-2090. DOI:10.1890/1051-0761(2006)016[2064:dalawa]2.0.co;2

Shahab, R. L., S. Brethauer, M. P. Davey, A. G. Smith, S. Vignolini, J. S. Luterbacher & M. H. Studer. 2020. A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose. Science 369 (6507): eabb1214. DOI:10.1126/science.abb1214

Sharma, B. & P. Shukla. 2020. Designing synthetic microbial communities for effectual bioremediation: A review. Biocatalysis and Biotransformation 38 (6): 405-414. DOI:10.1080/10242422.2020.1813727

Shiro, Y. 2012. Structure and function of bacterial nitric oxide reductases. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1817 (10): 1907-1913. DOI:10.1016/j.bbabio.2012.03.001

Silva, L. C. F., Lima, H. S., T. A. de O. Mendes, A. Sartoratto, M. P. Sousa, R. S. de Souza, S.O. de Paula, V. M. de Oliveira & C. C. Silva. 2020. Physicochemical characterization of Pseudomonas stutzeri UFV5 and analysis of its transcriptome under heterotrophic nitrification/aerobic denitrification pathway induction condition. Scientific Reports 10 (1): 2215. DOI:10.1038/s41598-020-59279-7

Soumare, A., A. G. Diedhiou, M. Thuita, M. Hafidi, Y. Ouhdouch, S. Gopalakrishnan & L. Kouisni. 2020. Exploiting biological nitrogen fixation: A route towards a sustainable agriculture. Plants (Basel) 9 (8): 1011. DOI:10.3390/plants9081011

Spieck, E. & E. Bock. 2015. Nitrifying bacteria. In Bergey’s Manual of Systematics of Archaea and Bacteria, John Wiley & Sons. Disponible en línea en: https://onlinelibrary.wiley.com/ doi/10.1002/9781118960608.bm00016

Starkenburg, S. R., D. J. Arp & P. J. Bottomley. 2008a. D-Lactate metabolism and the obligate requirement for CO2 during growth on nitrite by the facultative lithoautotroph Nitrobacter hamburgensis. Microbiology 154 (8): 2473-2481. DOI:10.1099/mic.0.2008/018085-0

Starkenburg, S. R., F. W. Larimer, L. Y. Stein, M. G. Klotz, P. S. G. Chain, L. A. Sayavedra-Soto, A. T. Poret-Peterson, M. E. Gentry, D. J. Arp, B. Ward & P. J. Bottomley. 2008b. Complete genome sequence of Nitrobacter hamburgensis X14 and comparative genomic analysis of species within the genus Nitrobacter. Applied and Environmental Microbiology 74 (9): 2852-2863. DOI:10.1128/AEM.02311-07

Stein, L. Y. & M. G. Klotz. 2016. The nitrogen cycle. Current Biology 26 (3): R94-R98. DOI:10.1016/j.cub.2015.12.021

Stevens, C. J. 2019. Nitrogen in the environment. Science 363 (6427): 578-580. DOI:10.1126/science.aav8215 Su, Q., A. R. Schittich, M. M. Jensen, H. Ng & B. F. Smets. 2021. Role of ammonia oxidation in organic micropollutant transformation during wastewater treatment: Insights from molecular, cellular, and community level observations. Environmental Science and Technology 55 (4): 2173-2188. DOI:10.1021/acs.est.0c06466

Takai, K. 2019. The nitrogen cycle: a large, fast, and mystifying cycle. Microbes and Environments 34 (3): 223-225. DOI:10.1264/jsme2. ME3403rh

Tolar, B. B., J. Herrmann, J. R. Bargar, H. van den Bedem, S. Wakatsuki & C. A. Francis. 2017. Integrated structural biology and molecular ecology of N-cycling enzymes from ammonia-oxidizing archaea. Environmental Microbiology Reports, 9 (5): 484-491. DOI:10.1111/1758- 2229.12567

Torregrosa-Crespo, J., P. González-Torres, V. Bautista, J. M. Esclapez, C. Pire, M. Camacho, M. J. Bonete, D. J. Richardson, N. J. Watmough & R. M. Martínez-Espinosa. 2017. Analysis of multiple haloarchaeal genomes suggests that the quinone-dependent respiratory nitric oxide reductase is an important source of nitrous oxide in hypersaline environments. Environmental Microbiology Reports 9 (6): 788-796. DOI:10.1111/1758-2229.12596

Trego, A. C., S. Mills & G. Collins. 2021. Granular biofilms: function, application, and new trends as model microbial communities. Critical Reviews in Environmental Science and Technology 51 (15): 1702-1725. DOI:10.1080/10643389.2020.1769433

Vajrala, N., W. Martens-Habbena, L. A. Sayavedra-Soto, A. Schauer, P. J. Bottomley, D. A. Stahl & D. J. Arp. 2013. Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea. Proceedings of the National Academy of Sciences 110 (3): 1006- 1011. DOI:10.1073/pnas.1214272110

Vijayan, A., R. K. Vattiringal Jayadradhan, D. Pillai, P. Prasannan Geetha, V. Joseph & B. S. Isaac Sarojini. 2021. Nitrospira as versatile nitrifiers: Taxonomy, ecophysiology, genome characteristics, growth, and metabolic diversity. Journal of Basic Microbiology 61 (2): 88-109. DOI:10.1002/jobm.202000485

Waite, D. W., M. Chuvochina, C. Pelikan, D. H. Parks, P. Yilmaz, M. Wagner, A. Loy, T. Naganuma, R. Nakai, W. B. Whitman, M. W. Hahn, J. Kuever & P. Hugenholtz. 2020. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. International Journal of Systematic and Evolutionary Microbiology 70 (11): 5972-6016. DOI:10.1099/ijsem.0.004213

Wang, S., C. Liu, X. Wang, D. Yuan & G. Zhu. 2020a. Dissimilatory nitrate reduction to ammonium (DNRA) in traditional municipal wastewater treatment plants in China: widespread but low contribution. Water Research 179: 115877. DOI:10.1016/j.watres.2020.115877

Wang, S., Y. Pi, Y. Song, Y. Jiang, L. Zhou, W. Liu & G. Zhu. 2020b. Hotspot of dissimilatory nitrate reduction to ammonium (DNRA) process in freshwater sediments of riparian zones. Water Research 173: 115539. DOI:10.1016/j.watres.2020.115539

Wang, Z., W. Li, H. Li, W. Zheng & F. Guo. 2020c. Phylogenomics of Rhodocyclales and its distribution in wastewater treatment systems. Scientific Reports 10 (1): 3883. DOI:10.1038/s41598-020-60723-x

Wei, W., K. Isobe, T. Nishizawa, L. Zhu, Y. Shiratori, N. Ohte, K. Koba, S. Otsuka & K. Senoo. 2015. Higher diversity and abundance of denitrifying microorganisms in environments than considered previously. The ISME Journal 9 (9): 1954-1965. DOI:10.1038/ismej.2015.9

Weralupitiya, C., R. Wanigatunge, S. Joseph, B. C. L. Athapattu, T.-H. Lee, J. K. Biswas, M. P. Ginige, S. S. Lam, P. S. Kumar & M. Vithanage. 2021. Anammox bacteria in treating ammonium rich wastewater: Recent perspective and appraisal. Bioresource Technology 334: 125240. DOI:10.1016/j.biortech.2021.125240

Widder, S., R. J. Allen, T. Pfeiffer, T. P. Curtis, C. Wiuf, W. T. Sloan, O. X. Cordero, S.P. Brown, B. Momeni, W. Shou, H. Kettle, H. J. Flint, A. F. Hass, B. Laroche, J.-U. Kreft, P. B. Rainey, S. Freilich, S. Schuster, K. Milferstedt, J. R. van der Meer, T. Groβkopf, J. Huisman, A. Free, C. Picioreanu, C. Quince, I. Klapper, S. Labarthe, B. F. Smets, H. Wang, Isaac Newton Institute Fellows & O. S. Soyer. 2016. Challenges in microbial ecology: building predictive understanding of community function and dynamics. The ISME Journal 10 (11): 2557-2568. DOI:10.1038/ismej.2016.45

Wittorf, L., C. M. Jones, G. Bonilla-Rosso & S. Hallin. 2018. Expression of nirK and nirS genes in two strains of Pseudomonas stutzeri harbouring both types of NO-forming nitrite reductases. Research in Microbiology 169 (6): 343-347. DOI:10.1016/j.resmic.2018.04.010

Wu, L., X. Chen, W. Wei, Y. Liu, D. Wang & B.-J. Ni. 2020. A Critical Review on Nitrous Oxide Production by Ammonia-Oxidizing Archaea. Environmental Science and Technology 54 (15): 9175-9190. DOI:10.1021/ acs.est.0c03948

Xia, L., X. Li, W. Fan & J. Wang. 2020. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge. Bioresource Technology 301: 122749. DOI:10.1016/j.biortech.2020.122749

Xu, S., X. Wu & H. Lu. 2021. Overlooked nitrogen-cycling microorganisms in biological wastewater treatment. Frontiers of Environmental Science and Engineering, 15 (6): 133. DOI:10.1007/s11783-021- 1426-2

Yin, Z., X. Bi & C. Xu. 2018. Ammonia-Oxidizing Archaea (AOA) Play with Ammonia-Oxidizing Bacteria (AOB) in Nitrogen Removal from Wastewater. Archaea, 2018: 8429145. DOI:10.1155/2018/8429145

Yu, R. & K. Chandran. 2010. Strategies of Nitrosomonas europaea 19718 to counter low dissolved oxygen and high nitrite concentrations. BMC Microbiology 10: 70. DOI:10.1186/1471-2180-10-70

Zehr, J. P. & D. G. Capone. 2020. Changing perspectives in marine nitrogen fixation. Science 368 (6492): eaay9514. DOI:10.1126/science. aay9514

Zhao, B., D. Y. Cheng, P. Tan, Q. An & J. S. Guo. 2018. Characterization of an aerobic denitrifier Pseudomonas stutzeri strain XL-2 to achieve efficient nitrate removal. Bioresource Technology 250: 564-573. DOI:10.1016/j.biortech.2017.11.038

Zheng, M., S. He, Y. Feng, M. Wang, Y.-X. Liu, C. Dang & J. Wang. 2021. Active ammonia-oxidizing bacteria and archaea in wastewater treatment systems. Journal of Environmental Sciences 102: 273-282. DOI:10.1016/j.jes.2020.09.039

Zheng, M., G. Mu, A. Zhang, J. Wang, F. Chang, J. Niu, X. Wang, T. Gao & Z. Zhao. 2022. Predominance of comammox bacteria among ammonia oxidizers under low dissolved oxygen condition. Chemosphere 308 (Pt 3): 136436. DOI:10.1016/j.chemosphere.2022.136436

Zumft, W. G. 1997. Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Reviews 61 (4): 533-616. DOI:10.1128/mmbr.61.4.533-616.1997

Descargas

Publicado

2023-09-25

Cómo citar

Ramírez-Muñoz, J. J., Oltehua-López, O., Cuervo-López, F. de M., & Texier, A.-C. (2023). Diversidad y flexibilidad metabólica de consorcios nitrificantes y desnitrificantes usados en el tratamiento de aguas residuales. HIDROBIOLÓGICA, 33(3). Recuperado a partir de https://hidrobiologica.izt.uam.mx/index.php/revHidro/article/view/1747

Número

Sección

Artículos de Revisión

Artículos más leídos del mismo autor/a