Caracterización de las comunidades microbianas asociadas a un florecimiento cianoalgal en una presa de León, Gto. México mediante secuenciación de regiones variables de los genes que codifican la rARN 16S y 18S
Palabras clave:
Comunidades microbianas, florecimientos cianoalgales, Planktothrix, rARN 16S, rARN 18S.Resumen
Antecedentes. Los florecimientos algales son cada vez más frecuentes debido a las actividades humanas, incluyendo el cambio climático. El análisis de la diversidad microbiana durante estos eventos proporciona información de cómo estas alteraciones están modificando el ecosistema. Estudios con un enfoque molecular, basados en metagenómica, ofrecen una visión de la dinámica de las comunidades microbianas cultivables y no cultivables presentes durante el florecimiento. Objetivo. Determinar la diversidad microbiana: la riqueza de especies, y su abundancia en la presa “El Palote” León, Gto. que presenta florecimientos microalgales. Métodos. Las comunidades procariotas y eucariotas en la superficie y a dos metros de profundidad se analizaron por metagenómica con los genes que codifican las subunidades ribosomales 16 y 18S, para las comunidades microbianas procariotas y eucariotas, respectivamente. Resultados. El análisis taxonómico de biodiversidad medida por el índice Shannon, mostró patrones de distribución similares en la muestra tomada en la superficie y a dos metros de profundidad, mientras que con el índice Simpson mostró diferencias. Los filos dominantes de los microorganismos procariotes fueron Cianobacterias del género Planktothrix spp, (69%, 2 m y 67%, 0 m), Proteobacterias (13.7 y 13%) y Bacteriodetes (6 y 8.2%). En el caso de los eucariotes, los grupos dominantes fueron Opistholokonta y Stramenopila, Alveolata y Rhizaria (SAR). El análisis por cuantiles reveló diferencias de abundancia: Flavobacterium spp. Aeromonas rivuli-sobria, Rheinheimera spp., Cetobacterium somerae y Cryptomonas curvata estuvieron presentes mayormente a dos metros de profundidad, mientras que Methylocaldum szegediense, Pseudospirillum y Aeromonas sobria estuvieron en mayor abundancia en la superficie. Conclusiones: Los resultados presentan un panorama de la estructura de las comunidades microbianas asociadas a un florecimiento algal de Planktothrix agardhii-rubescens.
Descargas
Citas
Amin, S. A., Hmelo, L. R., van Tol, H. M., Durham, B. P., Carlson, L. T., Heal, K. R., Morales, C. T., Berthiaume, M. S., Parker, M. S. et al. 2015. Interaction and signaling between a cosmopolitan phytoplankton and associated bacteria. Nature 522: 98–101. DOI: 10.1038/nature14488
Amorim, C. A. & A. do N. Moura. 2021. Ecological impacts of freshwater algal blooms on water quality, plankton biodiversity, structure, and ecosystem functioning. Science of The Total Environment 758: 143605. DOI: 10.1016/j.scitotenv.2020.143605.
Beaz-Hidalgo, R., Latif-Eugenín, F., Hossain, M.J., Berg, K., Niemi, R.M., Rapala, J., Lyra, C., M.R. Liles & M.J. Figueras. 2015. Aeromonas aquatica sp. nov., Aeromonas finlandiensis sp. nov. and Aeromonas lacus sp. nov. isolated from Finnish waters associated with cyanobacterial blooms. Systematic and Applied Microbiology 38(3): 161-8. DOI: 10.1016/j.syapm.2015.02.005
Brambilla, E., Hippe, H., Hagelstein, A., B. J. Tindall & E. Stacebrandt. 2001. 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremophiles 5: 23–33. DOI: 10.1007/s007920000169
Callahan B. J., McMurdie P. J., Rosen M. J., Han A. W., A. J. Johnson & S. P. Holmes. 2016. DADA2: High resolution sample inference from Illumina amplicon data. Nature Methods 13(7): 581-583. DOI: 10.1038/nmeth.3869
Cantoral Uriza, E. A., Asencio Martínez, A. D. & M. Aboal Sanjurjo. 2017.Cyanotoxins: environmental and health effects. Prevention measures. Hidrobiológica 27 (2): 241-251. DOI: 10.24275/uam/izt/dcbi/hidro/2017v27n2/Cantoral
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A. et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods. 7 (5): 335-336. DOI: 10.1038/nmeth.f.303
Catherine, A., Quiblier C., Yéprémian C., Patrice G., Groleau A., Vincon-Leite, B., Bernad, C. & M. Troyssellier. 2008. Collapse of a Planktothrix agardhii perennial bloom and mycrocystin dynamics in response to reduced phosphate concentrations in a temperate lake. FEMS Microbiology Ecology 65: 61-73 DOI:10.1111/j.1574-6941.2008.00494.x
Daly, A.J., Baetens, J.M. & B. De Baets. 2018. Ecological Diversity: Measuring the Unmeasurable. Mathematics 6 (119): 1-28. DOI:10.3390/math6070119
Dantas, E. W., Moura, A. N. & M. C. Bittencourt-Oliveira. 2011. Cyanobacterial blooms in stratified and destratified eutrophic reservoirs in semi-arid region of Brazil. Annals of the Brazilian Academy of Sciences 83(4): 1327-1338. DOI: 10.1590/S0001-37652011000400019
Davis, P.A., Dent, M., Parker, J., Reynolds, C.S., & A.E. Walsby. 2003. The annual cycle of growth rate and biomass change in Planktothrix spp. In Blelham Tarn, English Lake District. Freshwater Biology 48: 852–867. DOI: 10.1046/j.1365-2427.2003.01055.x
Debroas, D., Domaizon, I., Humbert, J. F., Jardillier, L., Lepère, C., Oudart, A. & N. Taïb. Overview of freshwater microbial eukaryotes diversity: a first analysis of publicly available metabarcoding data. 2017. FEMS Microbiol Ecology 93(4): 1-14. DOI: 10.1093/femsec/fix023
Favari, L., López, E., Martínez-Tabche, L. & E. Díaz-Pardo. 2002. Effect of insecticides on plankton and fish of Ignacio Ramírez Reservoir (Mexico): a biochemical and biomagnication study. Ecotoxicology and Environmental Safety 51:177-186. DOI: 10.1006/eesa.2002.2142
Fernández-Bravo, A & M.J. Figueras. 2020. An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity. Microorganisms 8(1):129. DOI:10.3390/microorganisms8010129
Figueras, M.J., Alperi, A. Beaz-Hidalgo, R., Stackebrandt, E., Brambilla, E., A.Monera & A. J. Martínez-Murcia. 2011. Aeromonas rivuli sp. nov., isolated from the upstream region of a karst water rivulet. Int J Syst Evol Microbiol 61(2): 242-248. DOI: 10.1099/ijs.0.016139-0
Fuentes., J. F.; Garbayo, I., Cuaresma, M., Montero, Z., González-del-Valle, M. & C. Vílchez. 2016. Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Marine drugs 14: 100 DOI:10.3390/md1505100
García-Mendoza, E., Quijano-Scheggia, S. I., Olivos Ortíz, A., & E. J. Núñez-Vázquez (eds.). 2016. Florecimientos algales nocivos en México. Ensenada, México. CICESE. 438 p
Gaytán-Herrera, M. L., Martínez-Almeida, C., Oliva-Martínez, M. G., Durán-Díaz, A. & P. Ramírez-García. 2011. Temporal variation of phytoplankton from the tropical reservoir Valle de Bravo, Mexico. Journal of Environmental Biology 32: 117-126.
Gobler, C. J. 2020. Climate change and Harmful Algal Blooms: Insights and perspective. Harmful Algae 91 (101731): 1-4. DOI: 10.1016/j.hal.2019.101731
Gotelli, N.J. & R. K. Colwell. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4: 379-391. DOI:10.1046/j.1461-0248.2001.00230.x
Grattepanche, J-D., Walker, L.M., Ott, B. M., Paim Pinto, D. L. Delwiche, C. F., Lane, C. E. & L. A. Katz. 2018. Microbial Diversity in the Eukaryotic SAR Clade: Illuminating the Darkness Between Morphology and Molecular Data. BioEssays 40: 1700198. DOI: 10.1002/bies.201700198
Hernández-Terrones, L. M., Nava-Ruiz, V. M., Escobar-Morales, S. & D. Ortega-Camacho, D. 2016. Florecimientos algales de cianobacterias en un cenote de Quintana Roo y su relación con la calidad el agua. In: García-Mendoza, E., Quijano-Scheggia, S. I., Olivos-Ortíz, A. & E. J. Núñez-Vázquez, (eds.). Florecimientos Algales Nocivos en México. Ensenada, México. CICESE, pp 422-432.
Inkinen, J., Jayaprakash, B., Siponen, S., Hokajärvi, A. M., Pursiainen, A., Ikonen, J., Ryzhikov, I., Täubel, M., Kauppinen, A., Paananen, J., Miettinen, I. T., Torvinen, E., Kolehmainen, M. & T. Pitkänen. 2019. Active eukaryotes in drinking water distribution systems of ground and surface waterworks. Microbiome. 7(1):99. DOI: 10.1186/s40168-019-0715-5
Ismail, A.H. & A. A. M. Adnan. 2016. Zooplankton composition and abundance as indicators of eutrophication in two small man-made lakes. Tropical Life Sciences Research 27 (Supp. 1): 31–38. DOI: 10.21315/ tlsr2016.27.3.5
Jakhar, P. 2013. Role of Phytoplankton and Zooplankton as Health Indicators of Aquatic Ecosystem: A Review. International Journal of Innovation Research Study 2(12):490-500.
Komárek, J. & Komárková-Legnerová, J. 2002. Contribution to the knowledge of planktic cyanoprokaryotes from central Mexico. Preslia, Praha 74:207-233.
Kurmayer, R., Christiansen, G., J. Fastner & T. Börner. 2004. Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp. Environmental Microbiology 6(8): 831–841. DOI: 10.1111/j.1462-2920.2004.00626.x
Krupa, E., Romanova, S., Berkinbaev, G., Yakovleva, N. & E. Sadvakasov. 2020. Zooplankton as Indicator of the Ecological State of Protected Aquatic Ecosystems (Lake Borovoe, Burabay National Nature Park, Northern Kazakhstan). Water. 12(9):2580 DOI: https://doi.org/10.3390/w12092580
Li, Q., Lin, F., Yang C., Wang, J., Lin, Y., Shen, M., Park, M.S., T. Li & J. Zhao. 2018. A Large-Scale Comparative Metagenomic Study Reveals the Functional Interactions in Six Bloom-Forming Microcystis-Epibiont Communities. Frontiers in Microbiology 9 (746): 1-16 DOI:10.3389/fmicb.2018.00746
Liu, L., Chen, H., Liu, M. et al. 2019. Response of the eukaryotic plankton community to the cyanobacterial biomass cycle over 6 years in two subtropical reservoirs. The Multidisciplinary Journal of Microbial Ecology 13: 2196–2208 DOI:10.1038/s41396-019-0417-9
Mallia, V., Ivanova, L., Eriksen, G. S., Harper, E., Connolly, L. & S. Uhlig. 2020. Investigation of In Vitro Endocrine Activities of Mycrocystis and Planktothrix Cyanobacterial Strains. Toxins 12:228; DOI:10.3390/toxins12040228
Mercado-Borrayo, B. M., Elías-Maxil, J. A., Cerón-Alfaro, O. & R. M. Ramírez-Zamora. 2008. Determinación de la cyanobacteria Cylindrospermopsis sp. en el agua cruda de la planta potabilizadora Los Berros. p. 1-6. XVI Congreso Nacional de Ingeniería Sanitaria y Ciencias Ambientales, 21-26 de abril de 2008, Ciudad de México, México.
Mikhailov, I. S., Zakharova, Y. R., Bukin, Y. S. et al. Co-occurrence Networks Among Bacteria and Microbial Eukaryotes of Lake Baikal During a Spring Phytoplankton Bloom. 2018. Environmental Microbiology 77: 96–109. DOI: 10.1007/s00248-018-1212-2
Moreira, G. A. L., Hinegk, L., Salvadore, A., Zolezzi, G., Hölker, F., Domecq, R. A. M., Bocci, M., Carrer, S., Nat, L. D., Escribá, J., et al. 2018. Eutrophication, research and management history of the sallow Ypacaraí Lake (Paraguay). Sustainability 10: 2426. DOI: 10.3390/su10072426
Moreno, D. E., Barragán, F., Pineda, E. & N. P. Pavon. 2011. Reanálisis de la diversidad alfa: alternativas para interpreter y comparer información sobre comunidades ecológicas. Revista Mexicana de biodiversidad 82: 1249-1261.
Needham, D. M. & J. A. Fuhrman. 2016. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nature Microbiology 1: 1–7. DOI: 10.1038/nmicrobiol.2016.5
Luria, C. M., Amaral-Zettler, L. A., Ducklow, H. W., Repeta, D. J., Rhyne, A. L. & J. J. Rich. 2017. Seasonal shifts in bacterial community responses to phytoplankton-derived dissolved organic matter in the Western Antarctic Peninsula. Frontiers in Microbiology 8: 2117 DOI: 10.3389/fmicb.2017.02117
Oliva-Martínez, M. G., A., Rodríguez-Rocha, A., Lugo-Vázquez & M. R. Sánchez-Rodríguez. 2008. Composición y dinámica del fitoplancton en un lago urbano hipertrófico. Hidrobiológica 18 (1): 752-761.
Oliver, R.L. & G. G. Ganf, G.G. 2000. Freshwater blooms. In: Whitton, B.A., & M. Potts (eds). The Ecology of Cyanobacteria. Their Diversity in Time and Space. Dordrecht: Kluwer Academic Publishers, pp. 149–194.
Pérez-Morales, A., Olivos-Ortiz, A., Quijano-Scheggia, S. I., Espinosa-Rodríguez, C. A. & M. A. Jiménez-Santos. 2016. Estado actual del studio de cianobacterias dulceacuículas formadoras de florecimientos en el centro de México. In: García-Mendoza, E., Quijano-Scheggia, S. I., Olivos-Ortíz, A. & E. J. Núñez-Vázquez, (eds.). Florecimientos Algales Nocivos en México. Ensenada, México. CICESE, pp 408-421.
Pineda-Mendoza, R. M., Olvera-Ramírez, R. & F. Martínez-Jerónimo. 2012. Mycrocystins produced by filamentous cyanobacteria in urban lakes. A case study in Mexico City. Hidrobiológica 22: 290-298.
Ramanan, R., Kang, Z., Kim, B.-H., Cho, D.-H., Jin, L., Oh, H.-M., et al. 2015. Phycosphere bacterial diversity in green algae reveals an apparent similarity across habitats. Algal Research 8: 140-144. DOI: 10.1016/j.algal.2015.02.003
Ramanan, R., Kim, B.-H., Cho, D.-H., Jin, L., Oh, H.-M., H.-S. Kim. 2016. Algae–bacteria interactions: Evolution, ecology and emerging applications. Biotechnology Advances 34:14-29. DOI: 10.1016/j.biotechadv.2015.12.003
Richards, D. 2019. Spatial and Temporal Variability in Zooplankton Assemblages in Utah. Progress Report To: Wasatch Front Water Quality Council. DOI: 10.13140/RG.2.2.30241.15208
Sivonen, K. & G. Jones. 1999. Cyanobacterial toxins. In: Chorus, I. & J. Bartram. (eds). Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management. London, UK: WHO, E & FN Spon, pp. 41–112.
Srivastava, A., Singh, S., Ahn, C.-Y., Oh, H.-M., & R. K. Asthana. 2013. Monitoring approaches for a toxic cyanobacterial bloom. Environ Sci Technol 47: 8999-9013. DOI: 10.1021/es401245k
Srivastava, A., Ahm, C.Y., Asthana, R. K., Lee, H.-G., H.-M., Oh. 2014. Status, alert system, and prediction of cyanobacterial bloom in South Korea. Bio Med Res Int ID 584696, 8 pag. DOI: 10.1155/2015/584696
Sun, Z., Li, G., Wang, C., Jing, Y., Zhu, Y., Zhang, S. & Y. Liu. 2014. Community dynamics of prokaryotic and eukaryotic microbes in an estuary reservoir. Scientific Reports. 4: 6966 DOI: 10.1038/srep06966
Teeling, H., Fuchs, B. M., Becher, D., Klockow, C., Gardebrecht, A., Bennke, C. M., et al. 2012. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336 (6081): 608–611. DOI: 10.1126/science.1218344
Thukral, A.K., Bhardwaj, R., Kumar, V. & A. Sharma. 2019. Corrigendum to "New indices regarding the dominance and diversity of communities, derived from sample variance and standard deviation” Heliyon 5(12): e03017. DOI: 10.1016/j.heliyon.2019.e03017
Tuomainen, J.M., Hietanen, S., Kuparinen, J., P. J. Martikainen & K. Servomaa. 2003. Baltic Sea cyanobacterial bloom contains denitrification and nitrification genes, but has neglilible denitrification activity. FEMS Mycrobiology Ecology 45(2): 83-96.
Vasas, G., Farkas, O., Borics, G., Felföldi, T., Sramkó, G., Batra, G., Bácsi, I. & S. Gonda. 2013. Appearance of Planktothrix rubescens Bloom with [D-Asp3, Mdha7] MC-RR in Gravel Pit Pondo f a Shallow Lake-Dominated Area. Toxins 5: 2434-2455. DOI:10.3390/toxins5122434
Vasconcelos, V., Martins, A., Vale, M., Antunes, A., Azevedo, J., Welker, M., López, O. & G. Montejano. 2010. First report on the occurrence of microcystins in planktonic cyanobacteria from Central Mexico. Toxicon 56: 425-431. DOI: 10.1016/j.toxicon.2010.04.011
Vizcaíno Rodríguez, L. A., Caro Becerra, J. L., Mayoral Ruiz, P. A., Lujan Godínez, R. & J. G. Michel Parra. 2019. Biodiversidad del fitoplancton y calidad de agua, un desafio mundial. Revista Latinoamericana el Ambiente y las Ciencias 10: 205-216. DOI: 10.7550/rmb.32706
Wierzchos, J., DiRuggieron, J., Vitek, P., Artieda, O., Souza-Egipsy, V., Skaloud, P., et al. 2015. Adaptation strategies of endolithic chlorophototrophs to survive the hyperatid and extreme solar radiation environment of the Atacama desert. Frontiers in Microbiology 6(10):934. DOI:10.3389/fmicb.2015.00934
Xu, Z., Te, S. H., Xu, C., H. Yiliang & K. Y.H. Gin. 2018. Variations of Bacterial Community Composition and Functions in an Estuary Reservoir during Spring and Summer Alternation. Toxins 10 (315): 45-66. DOI:10.3390/toxins10080315
Xue, Y. Y., Yu, Z., Chen, H. H., Yang, J. R., Liu, M., Liu, L. M., & B. Q. Huang. 2017. Cyanobacterial bloom significantly boosts hypolimnelic anammox bacterial abundance in a subtropical stratified reservoir. FEMS Microbiol. Ecol. 93(10): DOI: 10.1093/femsec/fix118
Yan, M. Chen, S., Huang, T., Li, B., Li, N., Liu, K., Zong, R., Miao. & X. Huang. 2020. Community Compositions of Phytoplankton and Eukaryotes during the Mixing Periods of a Drinking Water Reservoir: Dynamics and Interactions. Environmental Research and Public Health. 17(4):1128. https://doi.org/10.3390/ijerph17041128
Zhang, H., Jia, J., Chen, S., Huang, T., Wang, Y., Zhao, Z., Feng, J., Hao, H., Li, S. & X. Ma. 2018. Dynamics of Bacterial and Fungal Communities during the Outbreak and Decline of an Algal Bloom in a Drinking Water Reservoir. Int J Environ Res Public Health 5: 361-381. DOI: 10.3390/ijerph15020361
Zhao, D.Y., Shen, F., Zeng, J., Huang, R., Yu, Z. & Q. L. W. Network analysis reveals seasonal variation of co-occurrence correlations between Cyanobacteria and other bacterioplankton. 2016. Science of The Total Environment. 573: 817–825. DOI: 10.1016/j.scitotenv.2016.08.150
Zheng, T. L., Li, W. & Y. Li. 2011. Advance in study on microbial control of harmful algae blooms-explotation and research on marine algicidal bacteria. Xiamen: Xiamen University. 10: 1658-1668.
Zhou, J., Richlen, M.L., Sehein, T.R., Kulis, D.M., D. M. Anderson & Z. Cai. 2018. Microbial Community Structure and Associations During a Marine Dinoflagellate Bloom. Frontiers in Microbiology 9:1201. DOI: 10.3389/fmicb.2018.01201
Publicado
Cómo citar
Número
Sección
Licencia
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, HIDROBIOLÓGICA reconoce y respeta el derecho moral de los autores, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Publicar en la revista HIDROBIOLÓGICA tiene un costo de recuperación de $500 pesos mexicanos por página en blanco y negro (aproximadamente 29 dólares americanos) y $1000 pesos por página a color (aproximadamente 58 dólares americanos).
Todos los textos publicados por HIDROBIOLÓGICA sin excepción se distribuyen amparados bajo la licencia Creative Commons 4.0Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en HIDROBIOLÓGICA (por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en HIDROBIOLÓGICA.
Para todo lo anterior, el o los autor(es) deben remitir el formato de Carta-Cesión de la Propiedad de los Derechos de la primera publicación debidamente requisitado y firmado por el autor(es). Este formato se puede enviar por correo electrónico en archivo pdf al correo: enlacerebvistahidrobiológica@gmail.com; rehb@xanum.uam.mx (Carta-Cesión de Propiedad de Derechos de Autor).
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.