Uso potencial de algunas especies de microalgas y cianobacterias como aglutinantes de eritrocitos y como bactericidas

Microalgas y cianobacterias como aglutinantes de eritrocitos y bactericidas.

  • Mónica Cristina Rodríguez Palacio Laboratorio de Ficología Aplicada, Departamento de Hidrobiología, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa
  • Cruz Lozano Ramírez Laboratorio de Ficología Aplicada, Departamento de Hidrobiología, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa
  • Sergio H. Alvarez Hernandez Laboratorio de Ficología Aplicada, Departamento de Hidrobiología, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa
Palabras clave: Antibiosis, Desmodesmus quadricauda, lectinas, Tetradesmus obliquus

Resumen

Antecedentes. Las microalgas y cianobacterias son fuente potencial de nuevas aplicaciones con actividad biológica. En nuestro país la investigación de aplicaciones de estos organismos es incipiente aún. Objetivo. Probar el potencial de algunas especies de microalgas y cianobacterias como aglutinantes de eritrocitos (presencia de lectinas) y bactericidas, considerando la influencia de los sistemas y medios de cultivo y producción de estos organismos microscópicos. Métodos. Se cultivaron nueve especies a probar en diferentes sistemas: Fotobiorreactores de 8 y 16 L y Estanques tipo raceways de 300 y 3 000 L, usando los medios de cultivo Bayfoland forte ®, F/2, UTEX, Zarrouk y Jourdan modificado, las microalgas obtenidas de estos sistemas se liofilizaron para las pruebas. En las pruebas de detección de lectinas (pruebas de aglutinación) se siguieron las recomendaciones de Muñoz et al. (1985) y para las de antibiosis, las de Bauer et al. (1966). Resultados. Tres especies (dos clorofitas y una cianobacteria) provocaron fuerte aglutinación de los eritrocitos, se observó una dependencia del sistema de cultivo a aumentar la actividad aglutinante, favorecida por el crecimiento en raceways. Solo una especie de las microalgas estudiadas presentó actividad antibacteriana leve, contra Pseudomonas aeruginosa. Conclusiones. Se reporta actividad bacteriostática en el extracto de Desmodemus quadricauda contra Pseudomonas aeruginosa y aglutinación de la especie Tetradesmus obliquus, Desmodesmus quadricauda y Arthrospira platensis. Destacando que son tres especies potenciales proveedoras de lectinas, debido a que aglutinaron fuertemente los eritrocitos sin tratamiento enzimático.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abalde, J., A. Cid, J.P. Fidalgo, E. Torres & C. Herrero. 1995. Microalgas: cultivo y aplicaciones. La Coruña, Servicio de Publicaciones. 210 p.

Abedin, R.M.A. & H.M. Taha. 2008. Antibacterial and antifungal activity of cyanobacteria and green microalgae. Evaluation of medium components by Plackett-Burman design for antimicrobial activity of Spirulina platensis. Global Journal of Biotechnology and Biochemistry 3(1):22-31.

Ainouz, I.L., A.H. Sampaio, N.M.B. Benevides, A.L.P. Freitas, F.H.F. Costa, M.R. Carvalho & F. Pinheiro-Joventino. 1992. Agglutination of enzyme treated erythrocytes by Brazilian marine algal extracts. Botanica Marina 35:475-479. DOI:10.1515/botm.1992.35.6.475

Alexandre, K.B., P.L. Moore, M. Nonyane, E.S. Gray, N. Ranchobe, E. Chakauya, J.B. McMahon, B.R. O’Keefe, R. Chikwamba & L. Morris. 2013. Mechanisms of HIV-1 subtype C resistance to GRFT, CV-N and SVN. Virology 446:66-76. DOI:10.1016/j.virol.2013.07.019

Alvarez-Hernández, S., C. Lozano-Ramírez & M. Rodríguez-Palacio. 2019. Influence of the habitat on marine macroalgae toxicity. Annual Research & Review in Biology 33(1):1-9. DOI:10.9734/arrb/2019/ v33i130113

Alvarez-Hernández, S., G. De Lara-Isassi, R. Arreguín-Espinoza, B. Arreguín, A. Hernández-Santoyo & A. Rodríguez-Romero. 1999. Isolation and partial characterization of giraffine, a lectin from the Mexican endemic alga Codium giraffa Silva. Botanica Marina 42: 573-580. DOI:10.1515/BOT.1999.064

Bauer, A.W., W.M. Kirby, J.C. Sherris & M. Turck. 1966. Antibiotic susceptibility testing by a standardized single disc method. American Journal of Clinical Pathology 45(4):493-496. DOI:10.1093/ ajcp/45.4_ts.493

Benevides, N.M.B., S.R. Magalhães-Oliveira, M. L. Holanda, F. Rabelo-Melo, A.L. Ponte-Freitas & A. Holanda-Sampaio. 1999. Seasonal variations in hemaggutinating activity and chemical composition of two red marine algae Gracilaria dominguensis and Gelidium pusillum. Revista Brasileira de Fisiologia Vegetal 11(2):91-95.

Benkendorff, K., A.R. Davis & J.B. Bremner. 2001. Chemical defense in the egg masses of benthic invertebrates: an assessment of antibacterial activity in 39 mollusks and 4 polychaetes. Journal of Invertebrate Pathology 78(2):109-118. DOI:10.1006/jipa.2001.5047

Blaine, M. & J.W. Pyne. 1988. Biological active compound from microalgae. Enzyme and Microbial Technology 8:386-394. DOI:10.1016/0141- 0229(86)90144-4

Boyd, M.R., K.R. Gustafson, J.B. McMahon, R.H. Shoemaker, B.R. O’Keefe, T. Mori, R.J. Gulakowski, L. Wu, M.I. Rivera, C.M. Laurencot, M.J. Currens, J.H. Cardellina II, R.W. Jr. Buckheit, P.L. Nara, L.K. Pannell, R.C. Sowder II & L.E. Henderson. 1997. Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: Potential applications to microbicide development. Antimicrobial Agents and Chemotherapy 41:1521–1530. DOI:10.1128/AAC.41.7.1521

Chadwick, D.J., J. Marsh & J.B. Harborne. 2007. Role of secondary metabolites in chemical defense mechanisms in plants. John Wiley and Sons. 14 p. DOI:10.1002/9780470514009.ch10

Chu, C.Y., R. Huang & L.P. Lin. 2007. Analysis of the agglutinating activity from unicellular algae. Journal of Applied Phycology 19:401-408. DOI:10.1007/s10811-006-9146-3

Chu, C.Y., W.R. Liao, R. Huang & L.P. Lin. 2004. Haemagglutinating and antibiotic activities of freshwater microalgae. World Journal of Microbiology & Biotechnology 20:817-825. DOI:10.1007/s11274- 004-8712-6

Chung, H.Y., Ma. W.C. Joyce, O.P Ang, J.S. Kim & F. Chen. 2003. Seasonal variation of bromophenols in brow algae (Padina arborescens, Sargassum siliquastrum and Lobophora variegate) collected in Hong Kong. Journal of agricultural and food Chemistry 51:2619-2624. DOI:10.1021/jf026082n

Fabregas, J., A. Muñoz, J. Llovo & T. G. Villa. 1989. Differentiation of Candida guilliermondi varieties by lectin-like substances from marine algae. Research in Microbiology 140:373-378. DOI:10.1016/0923- 2508(89)90013-2

Férir, G., D. Huskens, S. Noppen, L.M. Koharudin, A.M. Gronenborn, D. Schols & D. Broad. 2014. Broad Anti-HIV activity of the Oscillatoria agardhii agglutinin homologue lectin family. Journal of Antimicrobial and Chemotherapy 69(10):2746-2758. DOI:10.1093/jac/dku220

Gama, F.M.A. 2004. Biología. Biogénesis y microorganismos. 2 da ed. Pearson Educación, México. 226 p.

Garrison, A.R., B.G. Giomarelli, C.M. Lear-Rooney, C.J. Saucedo, S. Yellayi, L.R. Krumpe, M. Rose, J. Paragas, M. Bray, G.G. Olinger, J.B. Jr. McMahon, J. Huggins & B.R. O’Keefe. 2014. The cyanobacterial lectin scytovirin displays potent in vitro and in vivo activity against Zaire Ebola virus. Antiviral Research 112:1-7. DOI: 10.1016/j.antiviral.2014.09.012

Gold, E.R. & P. Balding. 1975. Receptor-Specific Proteins. Amsterdam: Excerpta Medica. Amsterdam. 210 p.

Goldstein, I.J., R.C. Hughes, M. Monsigny, T. Osawa & N. Sharon. 1980. What should be called a lectin? Nature 285:66. DOI:10.1038/285066b0

González del Val, A., G. Platas, A. Basilio, A. Cabello, J. Gorrochategui, I. Suay, F. Vicente, E. Portillo, M. Jiménez del Río, G.R. García & F. Peláez. 2001. Screening of antimicrobial activities in red, green and brown macroalgae from Gran Canaria (Canary Islands, Spain). International Microbiology 4:35-40. DOI:10.1007/s101230100006

Guillard, R. R. L. & J. H. Ryther. 1962. Studies of marine plantonik diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. Journal of Microbiology 8:229-239.

Hernández, L.M.V., L.M.M. Hernández & L. Troccoli. 2008. Actividad antibacteriana y antimicótica de Spirobranchus giganteus giganteus (Serpulidae: polychaeta) de Guayacán, Península de Araya, estado Sucre, Venezuela. Universidad de Oriente. Saber. Revista Multidisciplinaria del Consejo de investigación de la Universidad de Oriente 20(3):283-288.

Hori, K., Y. Shimada, C. Oiwa, K. Miyazawa & K. Ito. 1993. Occurrence of a novel group of hemagglutinins extractable by pronase treatment in marine algae. Journal of Applied Phycology 5:219-223. DOI:10.1007/BF00004021

Jaki, B., J. Orjala, H. Bürgi & O. Sticher. 1999. Biological screening of cyanobacteria for antimicrobial and molluscicidal activity, brine shrimp lethality, and cytotoxicity. Pharmaceutical Biology 37(2):138-143. DOI:10.1076/phbi.37.2.138.6092

Kaushik, P. & A. Chauhan. 2008. In vitro antibacterial activity of laboratory grown culture of Spirulina platensis. Indian Journal of Microbiology 48: 348-352. DOI:10.1007/s12088-008-0043-0

Koike, K., M. Jimbo, R. Sakai, M. Kaeriyama, K. Muramoto, T. Ogata, T. Maruyama & H. Kamiya. 2004. Octocoral chemical signaling selects and controls dinoflagellate symbionts. Biology Bulletin 207:80-86.

Lara, V.M.A., R.J.L. Moreno & M.E.J. Amaro. 1996. Fitoplancton. Conceptos básicos y técnicas de laboratorio. Universidad Autónoma Metropolitana Unidad Iztapalapa, México. 227 p.

Liao, W.R. & R. Huang. 2000. Agglutination of human and animal erythrocytes in marine unicellular algae. Journal of Industrial Microbiology & Biotechnology 24:262-266. DOI:10.1038/sj.jim.2900818

Martel, C.M. 2009. Conceptual bases for prey biorecognition and feeding selectivity in the microplanktonic marine phagotroph Oxyrrhis marina. Microbial Ecology 57(4):589-597. DOI:10.1007/s00248- 008-9421-8

Mian, P., J. Heilmann, H. Bürgi & O. Sticher. 2003. Biological screening of terrestrial and freshwater cyanobacteria for antimicrobial activity, brine shrimp lethality, and cytoxicity. Pharmaceutical Biology 41(4):243-247. DOI:10.1076/phbi.41.4.243.15672

Muñoz, A., J. Llovo & J. Fabregas. 1985. Hemaglutininas de algas verdes. ACCCAW 22: 873-878.

Naranjo-Briceño, L., D. Rojas-Tortolero, H. González, R.P. Torres, R.N. Zegarra, L.D.A. Sena & D. Sosa del Castillo. 2010. Arthrospira platensis como biofactoría de metabolitos secundarios de interés farmacológico: el ácido pipecólico. Revista Latinoamericana de Biotecnología Ambiental y Algal 1:64-90.

Noaman, N.H., A. Fattah, M. Khaleafa & S.H. Zaky. 2004. Factors affecting antimicrobial activity of Synechococcus leopoliensis. Microbiological Research 159:395-402. DOI:10.1016/j.micres.2004.09.001

Nowak, T.P. & S.H. Barondes. 1975. Agglutinin from Limulus polyphemus. Purification with formalinized adsorbent. Biochimica et Biophysica Acta 393:115-123. DOI:10.1016/0005-2795(75)90221-4

Nurby, R., G. Medina, J. Jiménez, C. Yánez, M.Y. García, M.L. Di Bernardo & M. Gualtieri. 2009. Actividad antibacteriana y antifúngica de extractos de algas marinas venezolanas. Revista Peruana de Biología 16:97- 100. DOI:10.15381/rpb.v16i1.182

Ördög, V., W.A. Stirk, R. Lenobel, M. Bancírová, M. Strnad, J. van Staden, J. Szigeti & L. Németh. 2004. Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. Journal of Applied Phycology 16: 309-314. DOI:10.1023/B:JAPH.0000047789.34883.aa

Padmakumar, K. & K. Ayyakkannu. 1997. Seasonal variation of antibacterial and antifungal activities of the extracts of marine algae from southern coasts of India. Botanica Marina 40:507-515. DOI:10.1515/ botm.1997.40.1-6.507

Pales, E.E., M. Perrigault, J.E. Ward, S.E. Shumway & B. Allam. 2010. Microalgal cell surface carbohydrates as recognition sites for particle sorting in suspension-feeding bivalves. Biological Bulletin 218:75- 86. DOI:10.1086/BBLv218n1p75

Pérez-Gutiérrez, R.M. 2007. Actividad antimicrobiana de Oedogonium capillare. Revista Mexicana de Ciencias Farmacéuticas 38(3):26-29.

Rajasekaran, C.C.,P. Mohammed-Ajeesh, S. Balaji, M. Shalini, R. Siva, R. Das, D.P. Fulzele & T. Kalaivani. 2016. Effect of Modified Zarrouk’s Medium on Growth of Different Spirulina Strains. Walailak J Sci & Tech 2016 13(1):67-75. Availble online at: http://wjst.wu.ac.th

Rodríguez-Palacio, M.C. 2020. Obtención de bioproductos de impacto económico y social con microalgas y cianobacterias nativas de México. Trabajo de tesis de Doctorado en Medio Ambiente, Universidad Autónoma de Tamaulipas. Tamaulipas, México. 330 p.

Rodríguez-Palacio, M.C., R.B.E. Cabrera-Cruz, J.C. Rolón-Aguilar, C. Lozano-Ramírez, L.J. Galeana-Hurtado & E.D. Morales-Avendaño. 2018. Comparative study on the removal of N and P from municipal waste waters and leached vermicomposting using five microalgae strains. Desalination and Water Treatment 131:180-186. DOI:10.5004/ dwt.2018.23035

Roopashri, A.N. & J. Savitha. 2022. Screening of freshwater microalgae species for occurrence of lectins and their carbohydratebinding specificity. Journal of Applied Biological Sciences 16(1):24-34. DOI:10.5281/zenodo.5826031

Rosales, L.N.L. 2007. Evaluación de la actividad biológica de extractos de la cianobacteria Nostoc LAUN 0015, en condiciones de laboratorio. Trabajo de Grado presentado ante la División de Estudios Para Graduados para optar al grado de Magíster Scientarium en Microbiología, Universidad del Zulia. 101 pp.

Schlegel, I., N.T. Doan, N. Ch. & G.D. Smith. 1999. Antibiotic activity of new cyanobacterial isolates from Australia and Asia against green algae and cyanobacteria. Journal of Applied Phycology 10:471-479. DOI:10.1023/A:1008042619686

Shimizu, Y. 2003. Microalgal metabolites. Current Opinion in Microbiology 6(3):236-243. DOI:10.1016/S1369-5274(03)00064-X

Silva, A.J., V.L.R. Cavalcanti, A.L.F. Porto, W.A. Gama, R.M.P. Brandão-Costa & R. Pedrosa-Bezerra. 2020. The green microalgae Tetradesmus obliquus (Scenedesmus acutus) as lectin source in the recognition of ABO blood type: purification and characterization. Journal of Applied Phycology 32:103-110. DOI:10.1007/s10811-019-01923-5

Sreenivasa, R.P. & K.S. Parekh. 1981. Antibacterial activity of Indian seaweed extracts. Botanica Marina 24:577-582. DOI:10.1515/ botm.1981.24.11.577

Yamaguchi, M., T. Ogawa, K. Muramoto, Y. Kamio, M. Jimbo & H. Kamiya. 1999. Isolation and characterization of a mannan-binding lectin from the freshwater cyanobacterium (blue-green algae) Microcystis viridis. Biochemical and Biophysical Research Communications 265:703- 708. DOI:10.1006/bbrc.1999.1749

Citas electrónicas: https://utex.org/products/spirulina-medium?variant=30991737454682

Publicado
11-05-2022
Cómo citar
Rodríguez Palacio, M. C., Lozano-Ramírez, C., & Alvarez-Hernández, S. H. (2022). Uso potencial de algunas especies de microalgas y cianobacterias como aglutinantes de eritrocitos y como bactericidas: Microalgas y cianobacterias como aglutinantes de eritrocitos y bactericidas. HIDROBIOLÓGICA, 32(1). https://doi.org/10.24275/uam/izt/dcbs/hidro/2022v32n1/Rodriguez
Sección
Artículos