Incertidumbre de modelación y estimación Bayesiana de los parámetros de crecimiento de la rubia (Ocyurus chrysurus) de Veracruz, México

Autores/as

  • Jesús Jurado Molina Universidad Autónoma Metropolitana Unidad Xochimilco
  • Osvaldo Gutiérrez Benitez Posgrado de Ecología y Pesquerías, Universidad Veracruzana. Calle Independencia 30 (antes 38), Piso 1 y 2 Colonia Centro, Boca del Río, Veracruz, 94290. México
  • Alejandro Roldan Heredia Posgrado de Ecología y Pesquerías, Universidad Veracruzana. Calle Independencia 30 (antes 38), Piso 1 y 2 Colonia Centro, Boca del Río, Veracruz, 94290. México

DOI:

https://doi.org/10.24275/uam/izt/dcbs/hidro/2018v28n2/Jurado

Palabras clave:

crecimiento, estimación Bayesiana, Ocyurus chrysurus, Veracruz, verosimilitud

Resumen

Antecedentes. La mayoría de los análisis de crecimiento hechos para rubia no toman en cuenta la incertidumbre del modelo, ni de los parámetros. Objetivos. Explorar la incertidumbre de los modelos usando tres modelos distintos (von Bertalanffy, logístico y Gompertz) y el criterio de Akaike. También estimar los parámetros de crecimiento y su incertidumbre con métodos de máxima verosimilitud (con tres supuestos para la variancia residual) y Bayesianos. Métodos. Los modelos se ajustaron a datos de longitud por edad de organismos capturados en Antón Lizardo, Veracruz. En cuanto a los métodos Bayesianos, se construyó una distribución a priori para la longitud asintótica basada en información de la literatura. Se usó la metodología Cadenas de Markov de Monte Carlo (CMMC) para ajustar el modelo logístico. Resultados. Los resultados del criterio de Akaike sugirieron que el modelo logístico fue el que mejor se ajustó a los datos observados. Las estimaciones de los parámetros fueron: Longitud asintótica (L= 64.9 ± 5.43), tasa de crecimiento (K = 0.49 ± 0.07) y la edad para el punto de inflexión (I = 3.28 ± 0.42). En cuanto al análisis Bayesiano, las simulaciones MCMC sugirieron que el valor más probable para la longitud asintótica fue 64.3 cm con intervalo de 95% de probabilidad de (58.7, 70.1). El valor más probable para la tasa de crecimiento fue 0.48 con intervalo de probabilidad de 95% de (0.42, 0.55). Finalmente, el valor más probable para la edad en el punto de inflexión fue 1.7 años con intervalo de 95% de probabilidad de (1.31, 2.16). Conclusiones. Los métodos de máxima verosimilitud y Bayesianos deben ser considerados como herramientas estadísticas básicas para la evaluación del crecimiento individual, debido a que proveen un análisis robusto de la información disponible de la especie y la oportunidad de incorporar dichos análisis a acciones de manejo para la explotación sustentable del recurso.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Jesús Jurado Molina, Universidad Autónoma Metropolitana Unidad Xochimilco

Profesor-Investigador, Departamento del Hombre y su Ambiente

Osvaldo Gutiérrez Benitez, Posgrado de Ecología y Pesquerías, Universidad Veracruzana. Calle Independencia 30 (antes 38), Piso 1 y 2 Colonia Centro, Boca del Río, Veracruz, 94290. México

Estudiante de doctorado, Posgrado de Ecología y Pesquerías

Alejandro Roldan Heredia, Posgrado de Ecología y Pesquerías, Universidad Veracruzana. Calle Independencia 30 (antes 38), Piso 1 y 2 Colonia Centro, Boca del Río, Veracruz, 94290. México

Estidiante de Posgrado, Posgrado de Ecología y Pesqurías

Citas

Aguirre-García, B., A. Valencia-Cetina, F. Perera-Balan & A. Medina-Quej. 2004. A preliminary study the fisheries canané (Ocyurus chrysurus) in Holbox, Quintana Roo, Mexico. Resúmenes 55th Gulf and Caribbean Fisheries Institute. p. 2.

Akaike, M. 1973. Information theory and an extension of the maximum likelihood principle. In: Petrov, B. & F. Csaki (Eds.). Proceedings 2nd International Symposium of Information Theory. Akademia Kiado, Budapest, pp. 267-281.

Aldeco, J., A. G. Cortés & M. J. Jurado-Molina. 2015. Adaptaciones culturales y económicas a cambios provocados por la tala de mangle y deterioro pesquero en Mandinga, Veracruz. Sociedades Rurales, Produccion y Medio Ambiente 29 (15): 137-158.

Allen, G. R. 1985. FAO Species Catalogue. Vol. 6 Snappers of the world. An annotated and illustrated catalogue of Lutjanidae species known to date. FAO fisheries synopsis No. 125, Volume 6. Available online at: http://www.fao.org/docrep/009/ac481e/ac481e00.htm

Allman, R. J., L. R. Barbieri & C. T. Bartels. 2005. Regional and fisheryspecific patterns of age and growth of yellowtail snapper, Ocyurus chrysurus. Gulf of Mexico Science 23 (2): 211-223.

Araújo, J. N., A. S. Martins & K. G. Costa. 2002. Idades e crescimento da cioba Ocyurus chrysurus da costa central do Brasil. Revista Brasileira de Oceanografia 50: 47-57.

Borton, S. A. & J. L. Williams. 1986. Species profile: life histories and environmental requirements of coastal fishes and invertebrates (South Florida) gray, line, mutton, and yellowtail snappers. U.S. Fish and Wildlife Service Biological Report 82: 1-18.

Briggs, A. H., M. C. Weintein, F. E. A. Lenwick, J. Karnon, M. J. Sculpher & A. D. Paltiel. 2012. Model parameter estimation and uncertainty: A report of the ISPOR-SMDM modeling good research practices task force-6. Value in Health 15: 835-842.

Carrillo de Albornoz, C. & M. Ramiro. 1988. Estudio biológico de la rabirrubia Ocyurus chrysurus en el oeste de la plataforma suroriental de Cuba. I. Edad y crecimiento. Revista de Investigaciones Marinas 1 (9): 9-24.

Carrillo de Albornoz, C. 1999. Crecimiento y evaluación de la rabirrubia (Lutjanus chrysurus) en el oeste de la plataforma suroriental de Cuba. Revista de Investigaciones Marinas 20 (1-3): 45-52.

Dennis, G. D. 1991. The validity of length-frequency derived growth parameters from commercial catch data and their application to stock assessment of the yellowtail snapper (Ocyurus chrysurus). Proceedings of the Gulf and Caribbean Fisheries Institute 40: 126-138.

Ehrhardt, N. M. 1981. Curso sobre metodos de evaluacion de recursos y dinamica de poblaciones. 3ra. parte. Parametros poblacionales. FAO-CICIMAR. La Paz, BCS, México. 134 p.

García, E. R., J. C. Potts, R. A. Rulifson & C. S. Manooch. 2003. Age and growth of yellowtail snapper, Ocyurus chrysurus, from the southeastern United States. Bulletin of Marine Science 72 (3): 909-921.

Gompertz, B. 1825. On the nature of function expressive of the law of human mortality and on a new mode of determining the value of

life contingences. Philosophical. Transactions of the Royal Society of London 115: 515-585.

Gutiérrez-Benítez, O. 2012. Aspectos biológico pesqueros de la rubia Ocyurus chrysurus (Bloch, 1791) en Antón Lizardo, Veracruz, México. Tesis de Maestría. Universidad Veracruzana, Veracruz, México. 58 p.

Heemstra, P. C. & J. E. Randall. 1993. FAO species catalogue. Vol. 16 Groupers of the world (Family Serranidae, Subfamily Epinephelinae). An annotated and illustrated catalogue of the grouper, rockcod, hind, coral grouper and lyretail species known to date. FAO Fisheries Synopsis 16 (125), 382 p., 522 figs, 31 colour plates. Available online at: http://www.fao.org/docrep/009/t0540e/t0540e00.HTM

Hilborn, R. & M. Mangel. 1997. The ecological detective: Confronting Models with Data. Princeton University Press, Princeton, New Jersey, 315 p.

INAPESCA (Instituto Nacional de Pesca). 2012. Carta Nacional Pesquera. Diario Oficial de la Federación, 24 de agosto de 2012.

Jiménez-Badillo, M. L., H. Pérez, J. M. Vargas, J. C. Cortés & P. Flores. 2006. Catalogo de especies y artes de pesca del Parque Nacional Sistema Arrecifal Veracruzano. 1er. Ed., Comisión Nacional para la Biodiversidad (CONABIO). Universidad Veracruzana, Boca del Río, Veracruz, 182 p.

Jiménez-Badillo, M. L., & L. G. Castro-Gaspar. 2008. Pesca artesanal en el Parque Nacional Sistema Arrecifal Veracruzano, México. In: Granados-Barba, A., L. Abarca-Arenas & J. M. Vargas-Hernández (Eds.). Investigaciones Cientificas en el Sistema Arrecifal Veracruzano. Universidad Autónoma de Campeche, Campeche, pp. 221-240.

Johnson, A. G. 1983. Age and growth de yellowtail snapper from south Florida. Transactions of American Fisheries Society 112: 173-177. DOI:10.1577/1548-8659(1983)112<173:AAGOYS>2.0.CO;2

Karnon, M. J. Sculpher & A. D. Paltiel. 2012. Model parameter estimation and uncertainty: A report of the ISPOR-SMDM modeling good research practices task force-6. Value in Health 15: 835-842. DOI:10.1016/j.jval.2012.04.014

Kimura, D. K. 1980. Likelihood methods for the von Bertalanffy growth curve. Fisheries Bulletin 77: 765-774.

Leite Jr, N. O., A. S. Martins & J. N. Araújo. 2005. Idade e crescimento de peixes recifais na regiao central da zona económica exclusiva entre Salvador-BA e o Cabo de Sáo Tomé-RJ. (13°S a 22°S). In: Costa, P. A. S., A. S. Martins & G. Olavo (Eds.). Pesca e potenciais de exploracao de recursos vivos na regiao central da zona económica exclusiva brasileira. Rio de Janeiro, Brasil, pp. 203-216.

Manooch III, C. S. & C. Drennon. 1987. Age and growth of yellow snapper and queen triggerfish collected from the U.S Virgin Islands and Puerto Rico. Fisheries Research 6: 53-68. DOI:10.1016/0165-7836(87)90006-3

Mattos, S. G. M. & F. Maynou. 2009. Virtual population analysis of two snapper species, Lutjanus analis and Lutjanus chrysurus, caught off Pernambuco state, north eastern Brazil. Brazilean Journal of Oceanography 57 (3): 229-242. DOI:10.1590/S1679-87592009000300006

Maunder, M. N., S. J. Harley & J. Hampton. 2006. Including parameter uncertainty in forward projections of computationally intensive statistical population dynamics. ICES Journal of Marine Sciences 63: 969-979. DOI:10.1016/j.icesjms.2006.03.016

McClellan, D. B. & N. J. Cummings. 1998. Fishery and biology of the yellowtail snapper, Ocyurus chrysurus, from the southeastern United States, 1962 through 1996. Proceedings of the Gulf and Caribbean Fisheries Institute 50: 827-850.

Mexicano-Cíntora, G. 1999. Crecimiento del pargo canané Ocyurus chrysurus de la costa norte de Yucatán, México. Proceedings of the Gulf and Caribbean Fisheries Institute 45: 338-348.

Okolodkov, Y. B. 2008. Protoperidinium Bergh (Dinophyceae) of the National Park Sistema Arrecifal Veracruzano, Gulf of Mexico, with a key for identification. Acta Botanica Mexicana 84: 93-149.

Punt, A. E. & R. Hilborn. 2001. BAYES-SA: Bayesian Stock Assessment Methods in Fisheries. User’s manual. FAO Computerized Information Series (Fisheries) No. 12, Rome, 56 p.

R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Available on line at: http://www.R-project.org/

Ricker, W. E. 1975. Computation and interpretation of biological statistics of fish populations. Bulletin of Fisheries Research Board of Canada 191: 1-382.

Riley, C. M., G. J. Holt & C. R. Arnold. 1995. Growth and morphology of larval and juvenile captive bred yellowtail snapper, Ocyurus chrysurus. Fisheries Bulletin 93 (1): 179-185.

SAGARPA (Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación). 2012. Carta Nacional Pesquera. Diario Oficial de la Federación, 24 de agosto de 2012.

SEDAR III (Southeast Data, Assessment and Review). 2003. A stock assessment of yellowtail snapper, Ocyurus chrysurus, in the Southeast United States. Final report to the National Marine Fisheries Service, the Gulf of Mexico Fishery Management Council, and the South Atlantic Fishery Management Council. St. Petersburg, FL., 216 p.

Torres, R. & E. A. Chávez, 1987. Evaluación y diagnóstico de la pesquería de rubia (Lutjanus synagris (L) en el Estado de Yucatán. Ciencias Marinas 13 (1): 7-29.

Von Bertalanffy, L. 1938. A quantitative theory of organic growth (Inquiries on growth laws II). Human biology 10 (2): 181-213.

Descargas

Publicado

2018-08-31

Cómo citar

Jurado Molina, J., Gutiérrez Benitez, O., & Roldan Heredia, A. (2018). Incertidumbre de modelación y estimación Bayesiana de los parámetros de crecimiento de la rubia (Ocyurus chrysurus) de Veracruz, México. HIDROBIOLÓGICA, 28(2). https://doi.org/10.24275/uam/izt/dcbs/hidro/2018v28n2/Jurado

Número

Sección

Artículos