Comparative analysis of chemical and bacterial distribution of coastal lagoons and freshwater lakes in Turkish Thrace

Autores

  • Pinar Altinoluk-Mimiroglu Technology Research and Development Centre, Trakya University. Edirne, 22030. Turkey
  • Belgin Camur-Elipek Department of Biology, Faculty of Science, Trakya University. Edirne, 22030. Turkey

DOI:

https://doi.org/10.24275/uam/izt/dcbs/hidro/2018v28n1/Altinoluk

Palavras-chave:

bacteria, lagoon-lake, physicochemical parameters, Turkey

Resumo

Background. Microbial contamination of water bodies is causing major environmental and public health concerns in developing countries. Bacterial inclusion of inland waters can be of allochthonous and/or autochthonous origins. Goals. The aim of this study was to determine and compare the microbial contamination with environmental factors controlling colonization of bacteria in lagoon-lakes and freshwater lakes. Methods. Two lagoon-lakes and two freshwater lakes in Turkish Thrace were chosen and sampling was undertaken from October 2014 to August 2015 at seasonal intervals. While total heterotrophic bacteria, E. coli, coliform, and fecal coliform bacteria distributions from allochthonous and autochthonous origins were determined, environmental conditions of the ecosystems were also measured. While the Bray-Curtis Similarity Index and the Correspondence Analysis with Abundance Plot Analyses were used to determine the similarities of the sampling habitats, the Spearman’s Correlation Index was applied to clarify relationships between the environmental variables and the bacterial distribution. Results. The bacterial distribution was positively related to dissolved oxygen in one of the sampled lagoon-lakes (r = 1.0, p < 0.01) and negatively correlated with total dissolved solids and salinity in one of the sampled freshwater lakes (r = -0.95, p < 0.01; r = -0.80, p < 0.05, respectively). Conclusions. This research indicated that the saline water of the lagoon-lakes has limited the number of bacteria when compared with freshwater lakes.

Downloads

Não há dados estatísticos.

Referências

AAnderud, Z. T., J. C. VerT, J. T. Lennon, T. W. MAgnusson, d. P. BreAkWeLL & A. r. HArker. 2016. Bacterial dormancy is moreprevalent in freshwater than hypersaline lakes. Frontiers in Microbiology 7: 853. DOI:10.3389/fmicb.2016.00853.

AnonyMous. 2016. Yerustu Su Kalitesi Yonetmeligi, (Water Pollution Control Regulation). Official Gazette No: 29797 of 10 August 2016, Ankara, Turkey.

APHA. 1998. Standard Methods for the examination of water and waste water. 20th Edition. American Public Health Association, Washington, D.C.

Canfora L., G. Bacci, F. Pinzari, G. L. Papa , C. Dazzi & A. Benedetti. 2014. Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil? Plos One 9(9): 1-15. DOI:10.1371/journal.pone.0106662.

Creed, J. T., C. A. Brockhoff & T. D. Martin. 1994. Determination of trace elements in waters and wastes by inductively coupled plasmamass spectrometry, Method 200.8, Revision 5.4: US Environmental Protection Agency, 61 p.

Crump , B. C., C. S. Hopkinson, M. L. Sogin & J. E. Hobb ie. 2004. Microbial biogeography along an estuarine salinity gradient: combined influences of bacterial growth and residence time. Applied Environmental Microbiology 70 (3): 1494-1505. DOI:10.1128/AEM.70.3.1494-1505.2004.

Domb ek, P. E., L. K. Johnson, S. T. Zimm erley & M. J. Sadowsky. 2000. Use of repetitive DNA sequences and the PCR to differentiate Escherichia coli isolates from human and animal sources. Applied and Environmental Microbiology 66 (6): 2572-2577. DOI:10.1128/AEM.66.6.2572-2577.2000.

Doreen, N., J. Okot-Okumu & F. J. Muyodi. 2015. Microbial safety assessment of recreation water at Lake Nabugabo, Uganda. African Journal of Environmental Science and Technology 9 (10): 773-782. DOI:10.5897/AJEST2015.1979.

Ehrhardt, J., A. S. Alabi, P. G. Kremsner, W. Rabsch, K. Becker, F. T. Foguim, T. Kuczius, M. Esen & F. Schaumburg. 2017. Bacterial contamination of water samples in Gabon, 2013. Journal of Microbiology, Immunology and Infection 50 (5): 718-722. DOI:10.1016/j.jmii.2016.03.009.

Hautman, D. P. & D. J. Munch, D. J., 1997. Method 300.1 Determination of inorganic anions in drinking water by ion chromatography. EPA: Ohio.

Herlemann, D. P. R., D. Lundin, A. F. Andersson, M. Labrenz & K. Jurgens. 2016. Phylogenetic signals of salinity and season in bacterial community composition across the salinity gradient of the Baltic Sea. Frontiers in Microbiology 7: 1883. DOI:10.3389/fmicb.2016.01883.

Hyun, J. H., J. K. Choi, K. H. Chung, E. J. Yang & M. K. Kim. 1999. Tidally induced changes in bacterial growth and viability in the macrotidal Han River estuary, Yellow Sea. Estuarine Coastal and Shelf Science. 48 (2): 143-153. DOI:10.1006/ecss.1998.0421.

Jansson, M., A. K. Bergstrom, P. Blomqvist & S. Drakare. 2000. Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81 (11): 3250-3255. DOI:10.1890/0012-9658(2000)081[3250:AOCAPB]2.0.CO;2.

June, M., O. Paul & K. Kiplagat . 2016. Bacteriological quality of water from selected water sources in Samburu South – Kenya. Imperial Journal of Interdisciplinary Research 2 (9): 310-316. ISSN: 2454-1362.

Kenar, B. & M. Altindis. 2001. Hygenic quality investigation of both drinking and tap-waters in Afyon. The Medical Journal of Kocatepe 2: 269-274. DOI:10.18229/ktd.54525.

Logue, J. B., C. A. Stedmon, A. M. Kellerman, N. J. Nielsen, A. F. Andersson, H. Laudon, E. S. Lindstrom & E. S. Kritzberg. 2016. Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. The ISME Journal 10 (3): 533-545. DOI:10.1038/ismej.2015.131.

Małecka, M. & W. Donderski. 2006. Heterotrophic bacteria inhibiting water of the river Brda on the Bydgoszcz town section. Baltic Coastal Zone 10: 31-46. ISSN 1643-0115.

Mokondoko, P., R. H. Manson & O. Perez-Maqueo. 2016. Assessing the service of water quality regulation by quantifying the effects of land use on water quality and public health in central Veracruz, Mexico. Ecosystem Services 22: 161-173. DOI:10.1016/j.ecoser.2016.09.001.

Odonkor, S. T. & J. K. Ampofo. 2013. Escherichia coli as an indicator of bacteriological quality of water: an overview. Microbiology Research 4 (1): 2. DOI:10.4081/mr.2013.e2.

Peeters, K., D. A. Hodgson, P. Convey & A. Willems. 2011Culturable diversity of heterotrophic bacteria in Forlidas Pond (Pensacola Mountains) and Lundström Lake (Shackleton Range), Antarctica. Microbial Ecology 62 (2): 399-413. DOI:10.1007/s00248-011-9842-7.

Swiat ecki, A. 1997. Spatial and seasonal changes in bacterioplankton of heated Koninskie lakes. Archives of Polish Fisheries 5 (1): 167-182.

Tok, E., A. S. D. Gunay & A. C. T. Turan. 2016. A case study in natural coastline of Enez-Kesan districts by using natural threshold analysis. Journal of Ocean & Coastal Management 118: 129-138. DOI:10.1016/j.ocecoaman.2015.07.030.

Tryland, I., M. Myrmel, O. Ostensvik, A. C. Wennberg & L. J. Robertson. 2014. Impact of rainfall on the hygienic quality of blue mussels and water in urban areas in the Inner Oslofjord, Norway. Marine Pollution Bulletin 85 (1): 42-49. DOI:10.1016/j.marpolbul.2014.06.028.

World Health Organizat ion. 2003. Guidelines for safe recreational water environments. Volume 1: coastal and fresh waters. World Health Organization.

Publicado

2018-05-30

Como Citar

Altinoluk-Mimiroglu, P., & Camur-Elipek, B. (2018). Comparative analysis of chemical and bacterial distribution of coastal lagoons and freshwater lakes in Turkish Thrace. HIDROBIOLÓGICA, 28(1), 61–69. https://doi.org/10.24275/uam/izt/dcbs/hidro/2018v28n1/Altinoluk

Edição

Seção

Artículos