Efecto de la suplementación de dos tipos de biomasa microbiana adicionadas a bajos niveles sobre el crecimiento, asimilación y protección hepática en tilapia del Nilo (Oreochromis niloticus)

Autores/as

  • Lourdes Xochipa Hernández Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León Nuevo León
  • Oscar Daniel García Pérez Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León Nuevo León
  • Julio Cesar Cruz Valdez Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León Nuevo León
  • Julián Gamboa-Delgado 2 Programa Maricultura, Departamento de Ecología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León
  • Hugo Bernal Barrágan Facultad de Agronomía, Universidad Autónoma de Nuevo León.
  • David Alonso Villarreal Cavazos 2 Programa Maricultura, Departamento de Ecología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León

Palabras clave:

tilapia del Nilo, biomasa microbiana, Arthrospira, isótopos estables, actividad enzimática

Resumen

Objetivos. Se diseñó un experimento nutricional en el cual se evaluó el efecto de la sustitución parcial de harina de pescado (HP) por biomasa bacteriana y espirulina (Arthrospira platensis) sobre el crecimiento, asimilación de nutrientes y protección hepática en tilapia del Nilo. Métodos. Para ello se formularon cinco tratamientos (dietas isoprotéicas e isoenergéticas): La dieta control consistió en 100% de la proteína aportada por HP, los tratamientos 97HP:3AP y 94HP:6AP consistieron en 3 y 6%, respectivamente, de proteína aportada por Arthrospira y 97HP:3BB y 94HP:6BB en 3 y 6%, respectivamente, de la proteína aportada por biomasa Bacteriana. Se utilizaron 320 alevines (0.8(0.05 g peso inicial), distribuidos en 16 organismos por acuario (4 acuarios por tratamiento). Durante 28 días se ofreció alimento ad libitum en tres porciones por día, iniciando con 10% de la biomasa del acuario. Resultados y conclusiones. Los parámetros de rendimiento entre tratamientos fueron similares. Los valores isotópicos del nitrógeno determinados en los ingredientes experimentales y en tejido muscular de los peces permitió estimar la asimilación proporcional relativa del nitrógeno dietario aportado por los ingredientes experimentales. Se observó que, incluso a los niveles evaluados, ambas fuentes microbianas aportaron nitrógeno estructural durante la biosíntesis de músculo. Al evaluar el grado de protección hepática conferido por los ingredientes en peces expuestos a diésel, todos los tratamientos presentaron un incremento en la actividad de la enzima carboxilesterasa. En cambio, la actividad de glutatión-S-transferasa, se incrementó solamente en los peces que consumieron las dietas con 3 y 6% de espirulina. La adición de las fuentes microbianas en la mayoría de los casos promovió respuestas fisiológicas positivas al observarse que los niveles de expresión enzimática no presentaron alteraciones significativas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdel-Tawwab, M. & H. M. Ahmad. 2009. Live Spirulina (Arthrospira platensis) as a growth and immunity promoter for Nile tilapia, Oreochromis niloticus (L.), challenged with pathogenic Aeromonas hydrophila. Aquaculture Research 40 (9): 1037-1046.

Aguilera-González, C., J. Cruz & R. M. Alfaro. 2015. Physiological response of alligator gar juveniles (Atractosteus spatula) exposed to sub-lethal doses of pollutants. Fish physiology and biochemistry 41: 1015-1027.

Al-Ghais, S. M., S. Ahmad & B. Ali. 2000. Differential inhibition of xenobiotic-metabolizing carboxylesterases by organotins in marine fish. Ecotoxicology and Environmental Safety 46 (3): 258-264.

Alemayehu, T., A. Geremew & A. Getahun. 2018. The Role of Functional Feed Additives in Tilapia Nutrition. Fisheries and Aquaculture Journal, 9: 1-6.

Allocati, N., M. Masulli, D. di Ilio & L. Federici. 2018. Glutathione transferases: substrates, inhibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis 7 (1): 8.

Alves, D. R. S., S. R. de Oliveira, T. G. Luczinski, W. R. Boscolo, F. Bittencourt, A. Signor & D. T. Detsch. 2020. Attractability and palatability of liquid protein hydrolysates for Nile tilapia juveniles. Aquaculture Research 51 (4): 1681-1688.

Ankjærø, T., J. T Christensen & P. Grønkjær. 2012. Tissue-specific turnover rates and trophic enrichment of stable N and C isotopes in juvenile Atlantic cod Gadus morhua fed three different diets. Marine Ecology Progress Series 461: 197-209.

AOAC (Association of Official Analytical Chemists). 2006. Official Methods of Analysis of AOAC International. 18th Ed. Association of Analytical Chemistry, Mary Land, USA.

Arriaga-Hernández, D., C. Hernández, E. Martínez-Montaño, L. Ibarra-Castro, L. Lizárraga-Velázquez, N. Leyva-López & M. C. Chávez-Sánchez. 2021. Fish meal replacement by soybean products in aquaculture feeds for white snook, Centropomus viridis: Effect on growth, diet digestibility, and digestive capacity. Aquaculture 530: 735823.

Barreto-Curiel, F., U. Focken, L. R. D’Abramo, J. A. Cuarón & M. T. Viana. 2018. Use of isotopic enrichment to assess the relationship among dietary protein levels, growth and nitrogen retention in juvenile Totoaba macdonaldi. Aquaculture 495: 794-802.

Barriga-Vallejo, C., C. Aguilera, J. Cruz, J. Banda-Leal, D. Lazcano & R. Mendoza. 2017. Ecotoxicological biomarkers in multiple tissues of the neotenic Ambystoma spp. For a non-lethal monitoring of contaminant exposure in wildlife and captive populations. Water, Air, & Soil Pollution 228: 1-11.

Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72 (1-2): 248-254.

Conceição, L. E. C., J. Skjermo, G. Skjåk-Bræk & J. A. J. Verreth. 2001. Effect of an immunostimulating alginate on protein turnover of turbot (Scophthalmus maximus L.) larvae. Fish Physiology and Biochemistry 24 (3): 207-212.

Darwish, R., M. A. Gedi, P. Akepach, H. Assaye, A. S. Zaky & D. A. Gray. 2020. Chlamydomonas reinhardtii is a potential food supplement with the capacity to outperform Chlorella and Spirulina. Applied Sciences 10(19): 6736.

Diniz, A. F. A., B. F. de Oliveira Claudino, D. M. C. Francelino, J. M. A. da Silva, B. C. Barros, R. R. A. Arruda, M. K. N. Melchiades, P. B. Ferreira, F. F. L. Júnior, L. S. Abreu, Y. M. do Nascimento, M. C. C. Silva J. F. Tavares & B. A. da Silva. 2024. Arthrospira platensis prevents contractile reactivity damage in obese rats fed a hypercaloric diet by positive modulating the Rho-A/Rho-kinase pathway, inflammation and oxidative stress. Journal of Functional Foods 115: 106116.

FAO. 2022. El estado mundial de la pesca y la acuicultura 2022. Hacia la transformación azul. Roma, Disponible en línea en: https://doi.org/10.4060/cc0461es (consultado el 19 agosto 2024)

Gamboa-Delgado, J. & L. Le Vay. 2009. Natural stable isotopes as indicators of the relative contribution of soy protein and fish meal to tissue growth in Pacific white shrimp (Litopenaeus vannamei) fed compound diets. Aquaculture 291 (1-2): 115-123.

Gamboa-Delgado, J., A. G. A. Ibarra, Y. I. Morales-Navarro, M. G. Nieto-López, D. Villarreal-Cavazos, M. Maldonado-Muñiz M. Tapia-Salazar, D. Ricque-Marie & L. E. Cruz-Suárez. 2017. La Biomasa Microbiana como Ingrediente en la Nutrición Acuícola. Avances en Nutrición Acuícola. Universidad Autónoma de Nuevo León, pp. 213-263.

Gamboa-Delgado, J., M. G. Nieto-López, M. Maldonado-Muñiz, D. Villarreal-Cavazos, M. Tapia-Salazar & L. E. Cruz-Suárez. 2020. Comparing the assimilation of dietary nitrogen supplied by animal-, plant- and microbial-derived ingredients in Pacific white shrimp Litopenaeus vannamei: A stable isotope study. Aquaculture reports 17: 100294.

Gamboa-Delgado, J. 2022. Isotopic techniques in aquaculture nutrition: State of the art and future perspectives. Reviews in Aquaculture, 14 (1): 456-476.

Gamboa-Delgado, J. & M. Márquez-Reyes. 2018. Potential of microbial-derived nutrients for aquaculture development. Reviews in Aquaculture 10 (1): 224-246.

García-Pérez, O. D., J. C. Cruz-Valdez, C. Ramírez-Martínez, D. Villarreal-Cavazos & J. Gamboa-Delgado. 2018. Exploring the contribution of dietary protein from poultry by-product meal and fish meal to the growth of catfish Ictalurus punctatus by means of nitrogen stable isotopes. Latin American Journal of Aquatic Research 46 (1): 37-44.

García-Pérez, O. D., R. M. Sánchez-Casas, G. Moreno-Degollado, C. A. G. Munguia, D. Villarreal-Cavazos & J. Gamboa-Delgado. 2022. Substitution of fish meal with Madagascar cockroach (Gromphadorhina portentosa) meal in diets for juvenile Nile tilapia (Oreochromis niloticus): effects on growth, nutrient assimilation, and nitrogen turnover rates. Fish Physiology and Biochemistry 48 (6): 1587-1597.

García-Pérez, O. D., M. Tapia-Salazar, M. G. Nieto-López, J. C. Cruz-Valdez, M. Maldonado-Muñiz, M. Guerrero Guerrero, L. M. López & A. G. Marroquín-Cardona. 2020. Effects of conjugated linoleic acid and curcumin on growth performance and oxidative stress enzymes in juvenile Pacific white shrimp (Litopenaeus vannamei) feed with aflatoxins. Aquaculture Research 51 (3): 1051-1060.

Glencross B., S. Irvin, S. Arnold, D. Blyth, N. Bourne & N. Preston. 2014. Effective use of microbial biomass products to facilitate the complete replacement of fishery resources in diets for the black tiger shrimp. Penaeus monodon. Aquaculture 431: 12–19.

Hesslein, R. H., K. A. Hallard & P. Ramlal. 1993. Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by 33S, 613C, and 615N. Canadian Journal of Fisheries and Aquatic Sciences 50 (10): 2071-2076.

Jabir, M. A. R., S. A. R. Jabir & S. Vikineswary. 2012. Nutritive potential and utilization of super worm (Zophobas morio) meal in the diet of Nile tilapia (Oreochromis niloticus) juvenile. African Journal of Biotechnology 11 (24): 6592-6598.

Kirimi, J. G., L. M. Musalia, A. Magana & J. M. Munguti. 2016. Performance of Nile tilapia (Oreochromis niloticus) fed diets containing blood meal as a replacement of fish meal. Journal of Agricltural Science 8: 79.

Mabrouk, M. M., M. Ashour, A. Labena, M. A. A. Zaki, A. F. Abdelhamid, M. S. Gewaily, M. A. O. Dawood, K. M. Abualnaja & H. F. Ayoub. 2022. Nanoparticles of Arthrospira platensis improves growth, antioxidative and immunological responses of Nile tilapia (Oreochromis niloticus) and its resistance to Aeromonas hydrophila. Aquaculture Research 53 (1): 125-135.

MacAvoy, S. E., S. A. Macko & L. S. Arneson. 2005. Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis. Canadian Journal of Zoology 83 (5): 631-641.

Macias-Sancho, J., L. H. Poersch, W. Bauer, L. A. Romano, W. Wasielesky & M. B. Tesser. 2014. Fishmeal substitution with Arthrospira (Spirulina platensis) in a practical diet for Litopenaeus vannamei: effects on growth and immunological parameters. Aquaculture 426: 120-125.

Matassa, S., N. Boon, I. Pikaar & W. Verstraete. 2016. Microbial protein: future sustainable food supply route with low environmental footprint. Microbial biotechnology 9 (5): 568-575.

Mazorra, M. T., J. A. Rubio & J. Blasco. 2002. Acid and alkaline phosphatase activities in the clam Scrobicularia plana: kinetic characteristics and effects of heavy metals. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 131 (2): 241-249.

Munguti, J., M. Nairuti, R. Iteba, J. O. Obiero, K. O. Kyule, D. M. A. Opiyo & E. O. Ogello. 2022. Nile tilapia (Oreochromis niloticus Linnaeus, 1758) culture in Kenya: Emerging production technologies and socio-economic impacts on local livelihoods. Aquaculture, Fish and Fisheries 2 (4): 265-276.

Nandurkar, H. 2017. Change in Alkaline Phosphatase Activity Induced by Tetracycline in Freshwater Mussel, Parreysia cylindrica (Annandale and Prashad). IOSR Journal of Pharmacy and Biological Sciences 12: 92-94.

Napierska, D., J. Kopecka, M. Podolska & J. Pempkowiak. 2006. Hepatic glutathione S-transferase activity in flounder collected from contaminated and reference sites along the Polish coast. Ecotoxicology and environmental safety 65 (3): 355-363.

Nogueira, L., D. G. H. da Silva, T. Y. K. Oliveira, J. M. C. da Rosa, A. A. Felicio & E. A. de Almeida. 2013. Biochemical responses in armored catfish (Pterygoplichthys anisitsi) after short-term exposure to diesel oil, pure biodiesel and biodiesel blends. Chemosphere 93 (2): 311-319.

Pakravan, S., A. Akbarzadeh, M. M. Sajjadi, A. Hajimoradloo & F. Noori. 2017. Partial and total replacement of fish meal by marine microalga Spirulina platensis in the diet of Pacific white shrimp Litopenaeus vannamei: Growth, digestive enzyme activities, fatty acid composition and responses to ammonia and hypoxia stress. Aquaculture Research 48 (11): 5576-5586.

Park, J. C., A. Hagiwara, H. G. Park & J. S. Lee. 2020. The glutathione S-transferase genes in marine rotifers and copepods: Identification of GSTs and applications for ecotoxicological studies. Marine Pollution Bulletin 156: 111080.

Phillips, D. L. & J. W. Gregg. 2001. Uncertainty in source partitioning using stable isotopes. Oecologia 127: 171-179.

Plaza, I., J. L. García & M. Villarroel. 2018. Effect of spirulina (Arthrospira platensis) supplementation on tilapia (Oreochromis niloticus) growth and stress responsiveness under hypoxia. Spanish Journal of Agricultural Research 16 (1): 7.

Romarheim O. H., M. Øverland, L. T. Mydland, A. Skrede & T. Landsverk. 2011. Bacteria grown on natural gas prevents soybean meal-induced enteritis in Atlantic salmon. Journal of Nutrition 141: 124–130.

Soni, R. A., K. Sudhakar & R. S. Rana. 2017. Spirulina–From growth to nutritional product: A review. Trends in Food Science & Technology, 69: 157-171.

Teimouri M., A. K. Amirkolaie & S. Yeganeh. 2013. The effects of Spirulina platensis meal as a feed supplement on growth performance and pigmentation of rainbow trout (Oncorhynchus mykiss). Aquaculture 396–399: 14–19.

Therrien, J. F., G. Fitzgerald, G. Gauthier & J. Bêty. 2011. Diet–tissue discrimination factors of carbon and nitrogen stable isotopes in blood of Snowy Owl (Bubo scandiacus). Canadian Journal of Zoology 89 (4): 343-347.

Vasilaki, A., E. Mente, E. Fountoulaki, M. Henry, C. Nikoloudaki, P. Berillis & I. Nengas. 2023. Fishmeal, plant protein, and fish oil substitution with single-cell ingredients in organic feeds for European sea bass (Dicentrarchus labrax). Frontiers in Physiology 14: 1199497.

Winter, E. R., E. T. Nolan, G. M. Busst & J. R. Britton. 2019. Estimating stable isotope turnover rates of epidermal mucus and dorsal muscle for an omnivorous fish using a diet-switch experiment. Hydrobiologia 828 (1): 245-258.

Xu, B., Y. Liu, K. Chen, L. Wang, G. Sagada, A. F. Tegomo & Q. Shao. 2021. Evaluation of methanotroph (Methylococcus capsulatus, Bath) bacteria meal (FeedKind®) as an alternative protein source for juvenile black sea bream, Acanthopagrus schlegelii. Frontiers in Marine Science 8: 778301.

Zhou, H. & B. Gu. 2020. Using stable isotope analysis to assess the relationship among dietary protein sources, growth, nutrient turnover and incorporation in Nile tilapia (Oreochromis niloticus). Aquaculture Nutrition 26 (5): 1443-1452.

Descargas

Publicado

2025-09-18

Cómo citar

Xochipa Hernández, L., García Pérez, O. D., Cruz Valdez, J. C., Gamboa-Delgado, J., Bernal Barrágan, H., & Villarreal Cavazos, D. A. (2025). Efecto de la suplementación de dos tipos de biomasa microbiana adicionadas a bajos niveles sobre el crecimiento, asimilación y protección hepática en tilapia del Nilo (Oreochromis niloticus). HIDROBIOLÓGICA, 35(2). Recuperado a partir de https://hidrobiologica.izt.uam.mx/index.php/revHidro/article/view/1806

Número

Sección

Artículos