Evaluación de la eficiencia de un sistema de humedales construidos en la remoción de mercurio de efluentes mineros auríferos
Palabras clave:
biorremediación, Heliconia psittacorum, humedales construidos, mercurio, minería auríferaResumen
Antecedentes. La contaminación por mercurio (Hg) producto del beneficio minero aurífero es un problema de índole ambiental, dada su capacidad de afectar los ecosistemas y la salud humana. Por lo cual, es fundamental proponer alternativas enfocadas en disminuir la contaminación producida principalmente al recurso hídrico, debido a la persistencia y permanencia de este metal pesado en el ambiente Objetivo. Evaluar la remoción de Hg y la carga orgánica del agua residual proveniente de un entable minero mediante un sistema de humedales de flujo subsuperficial horizontal. Métodos. Se realizó la caracterización fisicoquímica del agua residual minera, además, se diseñó y operó un sistema de tres humedales a los cuales se les varió el Tiempo de Retención Hidráulica (TRH) y la presencia o ausencia de Heliconia psittacorum, se evaluaron parámetros como pH, OD, turbidez, DBO5, DQO y Mercurio. Se aplicó una prueba estadística ANOVA con significancia del 95%. Resultados. El efluente minero arrojó concentraciones para DQO y Hg de 197 mg O2/L y 0,0021 mg/L, respectivamente, valores superiores a los permisibles por la normativa colombiana y de la EPA. Los humedales evaluados mostraron eficiencias de remoción para turbiedad, DBO5, DQO y Hg superiores al 98,44%, 93,10%, 71,52% y 91,03%, respectivamente. Las pruebas estadísticas sugieren que no existe diferencia significativa con respecto a la variación del TRH, pues los porcentajes de eficiencia de remoción del Hg para 2 y 4 días son relativamente similares Conclusiones. Los humedales de flujo subsuperficial horizontal y Heliconia psittacorum, son altamente eficientes en la remoción de Hg de aguas residuales de minería aurífera, consolidándose como una tecnología prometedora para la biorremediación ambiental.
Descargas
Citas
CFR Part 440 Subpart D. 2023. Part 440—Ore mining and dressing point source category. Subpart D—Mercury Ore Subcategory. US EPA (Enviromental Protection Agency). Code of Federal Regulations. Avalaible online at: https://www.ecfr.gov/current/title-40/part-440/subpart-D. (consultado el 10 de marzo de 2023)
Allen, D. J., M. Farrell, J. Huang, S. Plush, & L. M. Mosley. 2023. Artificial aeration of an overloaded constructed wetland improves hypoxia but does not ameliorate high nitrogen loads. Journal of Environmental Management 326: 116625. DOI: 10.1016/J.JENVMAN.2022.116625
Altonar-Gómez, X. A., K. Ximenatzintzun-Pedraza, V. Osuna-Vallejo, & R. Lindig-Cisneros. 2021. Respuesta de plantas jóvenes de cuatro especies de coníferas a la exposición al mercurio. Madera y Bosques 27 (3): 1–12. DOI: 10.21829/myb.2021.2732160
American Public Health Association, American Water Works Association, & Water Environment Federation. 2017. Standard Methods for the Examination of Water and Wastewater (R. Baird, A. Eaton, & E. Rice (eds.); 23rd ed., Issue 9). American Public Health Association.
Balciunas, E. M., U. Kappelmeyer, H. Harms, & H. J. Heipieper. 2020. Increasing ibuprofen degradation in constructed wetlands by bioaugmentation with gravel containing biofilms of an ibuprofen-degrading Sphingobium yanoikuyae. Engineering in Life Sciences 20 (5–6): 160–167. DOI: 10.1002/elsc.201900097
Bedoya, J. C., A. N. Ardila, & J. Reyes. 2014. Evaluación de un humedal artificial de flujo subsuperficial en el tratamiento de las aguas residuales generadas en la institución Universitaria Colegio Mayor de Antioquia, Colombia. Revista Internacional de Contaminacion Ambiental 30 (3): 275–283.
Brousett-Minaya, M. A., G. G. Rondan-Sabrina, M. Chirinos-Marroquin, & I. Biamont-Rojas. 2021. Impacto de la Minería en Aguas Superficiales de la Región Puno-Perú Impact of Mining on Surface Waters of the Region Puno-Perú. Revista de Difusión Cultural y Científica de La Universidad La Salle En Bolivia 21 (21): 187–207.
Chang, J., D. Peng, S. Deng, J. Chen, & C. Duan. 2022. Efficient treatment of mercury(Ⅱ)-containing wastewater in aerated constructed wetland microcosms packed with biochar. Chemosphere 290 (September 2021): 133302. DOI: 10.1016/j.chemosphere.2021.133302
Chen, J., S. Deng, W. Jia, X. Li, & J. Chang. 2021. Removal of multiple heavy metals from mining-impacted water by biochar-filled constructed wetlands: Adsorption and biotic removal routes. Bioresource Technology 331 (March): 125061. DOI: 10.1016/j.biortech.2021.125061
Cruz-Acevedo, E., M. Betancourt-Lozano, D. I. Arizmendi-Rodríguez, H. Aguirre-Villaseñor, D. Aguilera-Márquez, & J. García-Hernández. 2019. Mercury bioaccumulation patterns in deep-sea fishes as indicators of pollution scenarios in the northern Pacific of Mexico. Deep-Sea Research Part I: Oceanographic Research Papers 144: 52–62. DOI: 10.1016/j.dsr.2019.01.002
Decezaro, S. T., D. B. Wolff, R. K. Araújo, H. B. Faccenda, T. Perondi, & P. H. Sezerino. 2018. Vertical flow constructed wetland planted with Heliconia psittacorum used as decentralized post-treatment of anaerobic effluent in Southern Brazil. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering 53 (13): 1131–1138. DOI: 10.1080/10934529.2018.1530106
EPA (Environmental Protection Agency). 1993. Guia para el diseño y construcción de un humedal construido con flujos subsuperficiales (pp. 1–27). División de Manejo de Aguas Rama de Instalaciones Municipales Sección Técnica.
Faisal, A. A. H., D. S. Taha, W. H. Hassan, S. K. Lakhera, S. Ansar, & S. Pradhan. 2023. Subsurface flow constructed wetlands for treating of simulated cadmium ions-wastewater with presence of Canna indica and Typha domingensis. Chemosphere 338 (May): 139469. DOI: 10.1016/j.chemosphere.2023.139469
Gu, S., G. Gruau, R. Dupas, P. Petitjean, Q. Li, & G. Pinay. 2019. Respective roles of Fe-oxyhydroxide dissolution, pH changes and sediment inputs in dissolved phosphorus release from wetland soils under anoxic conditions. Geoderma 338 (December 2018): 365–374. DOI: 10.1016/j.geoderma.2018.12.034
Guzman, M., M. B. Romero Arribasplata, M. I. Flores Obispo, & S. C. Bravo Thais. 2022. Removal of heavy metals using a wetland batch system with carrizo (phragmites australis (cav.) trin. ex steud.): A laboratory assessment. Acta Ecologica Sinica 42 (1): 102–109. DOI: 10.1016/J.CHNAES.2021.08.001
Horan, N. 2003. Suspended growth processes. In: Mara, D. & Horan, N. (Eds.). Handbook of Water and Wastewater Microbiology. Academic Press, pp. 351–360. DOI: 10.1016/B978-012470100-7/50022-4
Huang, F., Y. Huang, J. Jia, Z. Li, J. Xu, S. Ni, & Y. Xiao. 2022. Research and engineering application of bypass combined artificial wetlands system to improve river water quality. Journal of Water Process Engineering 48 (May): 102905. DOI: 10.1016/j.jwpe.2022.102905
IDEAM (Instituto de Hidrología, Meteorología y Estudios Ambientales). 2007. Instructivo para la toma de muestras de aguas residuales. Disponible en línea: http://documentacion.ideam.gov.co/openbiblio/bvirtual/021172/Protocoloparaelmonitoreoyseguimientodelagua.pdf (consultado el 20 de novimebre de 2022)
Kasak, K., J. Truu, I. Ostonen, J. Sarjas, K. Oopkaup, P. Paiste, M. Kõiv-Vainik, Ü. Mander, & M. Truu. 2018. Biochar enhances plant growth and nutrient removal in horizontal subsurface flow constructed wetlands. Science of The Total Environment 639: 67–74. DOI: 10.1016/J.SCITOTENV.2018.05.146
Kosai, S., K. Nakajima, & E. Yamasue. 2023. Mercury mitigation and unintended consequences in artisanal and small-scale gold mining. Resources, Conservation and Recycling 188 (October 2022): 106708. DOI: 10.1016/j.resconrec.2022.106708
La Colla, N. S., S. E. Botté, & J. E. Marcovecchio. 2019. Mercury cycling and bioaccumulation in a changing coastal system: From water to aquatic organisms. Marine Pollution Bulletin 140 (June 2018): 40–50. DOI: 10.1016/j.marpolbul.2018.12.051
Liu, Z., & K. Q. Tran. 2021. A review on disposal and utilization of phytoremediation plants containing heavy metals. Ecotoxicology and Environmental Safety 226: 112821. DOI: 10.1016/j.ecoenv.2021.112821
Ma, N., W. Wang, J. Gao, & J. Chen. 2017. Removal of cadmium in subsurface vertical flow constructed wetlands planted with Iris sibirica in the low-temperature season. Ecological Engineering 109 (September): 48–56. DOI: 10.1016/j.ecoleng.2017.09.008
Madera-Parra, C. A., E. J. Peña-Salamanca, M. R. Peña, D. P. L. Rousseau, & P. N. L. Lens. 2015. Phytoremediation of Landfill Leachate with Colocasia esculenta, Gynerum sagittatum and Heliconia psittacorum in Constructed Wetlands. International Journal of Phytoremediation 17 (1): 16–24. DOI: 10.1080/15226514.2013.828014
Marrugo-Negrete, J., G. Enamorado-Montes, J. Durango-Hernández, J. Pinedo-Hernández, & S. Díez. 2017. Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands. Chemosphere 167: 188–192. DOI: 10.1016/j.chemosphere.2016.09.130
Minakshi, D., P. K. Sharma, A. Rani, P. Malaviya, V. Srivastava, & M. Kumar. 2022. Performance evaluation of vertical constructed wetland units with hydraulic retention time as a variable operating factor. Groundwater for Sustainable Development 19 (August): 100834. DOI: 10.1016/j.gsd.2022.100834
Ministerio de Ambiente y Desarrollo Sostenible. 2015. Resolución 0631 de 2015. Disponible en: https://fenavi.org/wp-content/uploads/2018/05/Resolucion-631-2015.pdf (consultado el 20 de noviembre de 2022)
Mozaffari, M. H., E. Shafiepour, S. A. Mirbagheri, G. Rakhshandehroo, S. Wallace, & A. I. Stefanakis. 2021. Hydraulic characterization and removal of metals and nutrients in an aerated horizontal subsurface flow “racetrack” wetland treating primary-treated oil industry effluent. Water Research 200: 117220. DOI: 10.1016/j.watres.2021.117220
Mozzaffari, M., E. Shafiepour, S. Ahmad, G. Rakhshandehroo, S. Wallace, & A. Stefanakis. 2021. Hydraulic characterization and removal of metals and nutrients in an aerated horizontal subsurface flow “racetrack” wetland treating primary-treated oil industry effluent. Bioresource Technology 200 (March): 125061. DOI: 10.1016/j.biortech.2021.125061
Orejuela, J., J. C. González, V. Lindao, L. Santillán, & S. Godoy. 2018. Evaluation of the efficacy of Heliconia psittacorum (heliconiaceae) cultivated hydroponically for phytoremediation of water with chromium (VI) presence. AIP Conference Proceedings 2003 (Vi): DOI: 10.1063/1.5050361
Ospina-Correa, J. D., J. G. Osorio-Cachaya, Á. M. Henao-Arroyave, D. A. Palacio-Acevedo, & J. Giraldo-Builes. 2021. Retos y oportunidades para la industria minera como potencial impulsor del desarrollo en Colombia. TecnoLógicas 24 (50): e1683–e1683. DOI: 10.22430/22565337.1683
Prasetya, A., P. Prihutami, A. D. Warisaura, M. Fahrurrozi, & H. T. B. Murti Petrus. 2020. Characteristic of Hg removal using zeolite adsorption and Echinodorus palaefolius phytoremediation in subsurface flow constructed wetland (SSF-CW) model. Journal of Environmental Chemical Engineering 8 (3): 103781. DOI: 10.1016/j.jece.2020.103781
Ramírez, J. S., D. C. R. Loaiza, & W. J. Asprilla. 2020. Humedales artificiales subsuperficiales: comparación de metodologías de diseño para el cálculo del area superficial basado en la remoción de la materia organica. Ingenierías USBMed 11 (1): 65–73. DOI: 10.21500/20275846.4558
Ramos-Espinosa, M. G., L. M. Rodriguez-Sanchez, & P. Martinez-Cruz. 2017. Uso de macrofitas acuaticas en el tratamiento de aguas para el cultivo de maiz y sorgo. Hidrobiologica 17 (1): 7–15. DOI: https://hidrobiologica.izt.uam.mx/index.php/revHidro/article/view/972
Rocha-Román, L., J. Olivero-Verbel, & K. Caballero-Gallardo. 2018. Impacto de la minería del oro asociado con la contaminación por mercurio en suelo superficial de San Martín de Loba, sur de Bolívar (Colombia). Revista Internacional de Contaminacion Ambiental 34 (1): 93–102. DOI: 10.20937/RICA.2018.34.01.08
Samuel, W., B. Richard, & J. A. Nyantakyi. 2022. Phytoremediation of heavy metals contaminated water and soils from artisanal mining enclave using Heliconia psittacorum. Modeling Earth Systems and Environment 8 (1): 591–600. DOI: 10.1007/s40808-020-01076-2
Sharma, R., & P. Malaviya. 2022. Constructed wetlands for textile wastewater remediation: A review on concept, pollutant removal mechanisms, and integrated technologies for efficiency enhancement. Chemosphere 290: 133358. DOI: 10.1016/j.chemosphere.2021.133358
Singh, A. D., K. Khanna, J. Kour, S. Dhiman, T. Bhardwaj, K. Devi, N. Sharma, P. Kumar, N. Kapoor, P. Sharma, P. Arora, A. Sharma, & R. Bhardwaj. 2023. Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. Chemosphere 319 (December 2022): 137917. DOI: 10.1016/j.chemosphere.2023.137917
Singh, S., & S. Chakraborty. 2020. Performance of organic substrate amended constructed wetland treating acid mine drainage (AMD) of North-Eastern India. Journal of Hazardous Materials 397 (February): 122719. DOI: 10.1016/j.jhazmat.2020.122719
Torres, J. D., J. S. Magno, R. R. Pineda Aguirre, & M. A. Cruz. 2018. Evaluación de la eficiencia en el tratamiento de aguas residuales para riego mediante humedales Artificiales de flujo libre superficial (FLS) con las especies Cyperus Papyrus y Phragmites Australis, en Carapongo-Lurigancho. Revista de Investigación Ciencia, Tecnología y Desarrollo 3 (2):. DOI: 10.17162/rictd.v3i2.657
Ventura, D., M. Ferrante, C. Copat, A. Grasso, M. Milani, A. Sacco, F. Licciardello, & G. L. Cirelli. 2021. Metal removal processes in a pilot hybrid constructed wetland for the treatment of semi-synthetic stormwater. Science of the Total Environment 754: 142221. DOI: 10.1016/j.scitotenv.2020.142221
Wu, S., L. Gao, J. Gu, W. Zhou, C. Fan, S. He, J. Huang, X. Zhang, Y. Cheng, Z. Wu, & Z. Wang. 2018. Enhancement of nitrogen removal via addition of cattail litter in surface flow constructed wetland. Journal of Cleaner Production 204: 205–211. DOI: 10.1016/j.jclepro.2018.09.036
Zhang, Y., J. Liu, Y. Zhou, T. Gong, J. Wang, & Y. Ge. 2013. Enhanced phytoremediation of mixed heavy metal (mercury)-organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1. Journal of Hazardous Materials 260: 1100–1107. DOI: 10.1016/j.jhazmat.2013.06.065
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 HIDROBIOLÓGICA
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, HIDROBIOLÓGICA reconoce y respeta el derecho moral de los autores, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Publicar en la revista HIDROBIOLÓGICA tiene un costo de recuperación de $500 pesos mexicanos por página en blanco y negro (aproximadamente 29 dólares americanos) y $1000 pesos por página a color (aproximadamente 58 dólares americanos).
Todos los textos publicados por HIDROBIOLÓGICA sin excepción se distribuyen amparados bajo la licencia Creative Commons 4.0Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en HIDROBIOLÓGICA (por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en HIDROBIOLÓGICA.
Para todo lo anterior, el o los autor(es) deben remitir el formato de Carta-Cesión de la Propiedad de los Derechos de la primera publicación debidamente requisitado y firmado por el autor(es). Este formato se puede enviar por correo electrónico en archivo pdf al correo: enlacerebvistahidrobiológica@gmail.com; rehb@xanum.uam.mx (Carta-Cesión de Propiedad de Derechos de Autor).
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.