Estrés oxidativo en peces inducido por retardantes de flama bromados, una revisión

Autores/as

  • Rosa M. Gónzalez-Rivera Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional
  • Jésus Javier Espinosa-Aguirre Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México
  • Hugo F. Olivares-Rubio Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.24275/uam/izt/dcbs/hidro/2021v31n1/Gonzalez

Palabras clave:

defensas antioxidantes, especies reactivas del oxígeno, estrés oxidativo, peces, retardantes de flama bromados

Resumen

Antecedentes. Los retardantes de flama son compuestos que se aplican como aditivos a diversos productos con el fin de reducir riesgos de incendios, entre los más usados se encuentran los retardantes de flama bromados (RFB) por su costo y eficiencia. Estos compuestos pueden alcanzar e impactar a los ambientes acuáticos; sin embargo, se carece de una revisión sobre el estrés oxidativo que ocasionan en los peces. Objetivos. Proveer una revisión sobre la inducción de estrés oxidativo en peces ocasionado por retardantes de flama bromados y aportar nuevas líneas de investigación. Métodos. Se realizó una búsqueda en Google Académico y se consideraron treinta artículos de acuerdo a los criterios de inclusión. Resultados. Los retardantes de flama bromados son capaces de inducir especies reactivas del oxígeno, daños en las membranas celulares, proteínas y en el ADN, así como modificar la respuesta de biomarcadores relacionados con la defensa antioxidante. También se encontró en estudios in vitro que una posible causa de inducción de es- trés oxidativo por estos compuestos ocurre a través de alteraciones en la actividad mitocondrial que causa incrementos en la producción de especies reactivas del oxígeno. Conclusiones. Es necesario incrementar estudios que consideren mezclas de RFB, particularmente, al tetrabromobisfenol A y a los nuevos retardantes de flama bromados debido a que su presencia en el ambiente es probable por la ausencia de restricciones normativas en su uso. Realizar estudios con especies de peces con reducida distribución geográfica por su alta susceptibilidad a contaminantes. Utilizar biomarcadores que involucren al daño oxidativo y a las defensas antioxidantes en un mismo estudio para obtener un panorama amplio de estos fenómenos y contribuir con otras investigaciones toxicológicas que colaboren al establecimiento de normas que controlen la liberación de estos contaminantes al ambiente.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Albina, M. L., Alonso, V., Linares, V., Bellés, M., Sirvent, J. J., Domingo, J. L., & Sánchez, D. J. 2010. Effects of exposure to BDE-99 on oxidative status of liver and kidney in adult rats. Toxicology 271 (1-2): 51-56. DOI: 10.1016/j.tox.2010.03.006
Bearr, J. S., Stapleton, H. M., & Mitchelmore, C. L. 2010. Accumulation and DNA damage in fathead minnows (Pimephales promelas) exposed to 2 brominated flame‐retardant mixtures, Firemaster® 550 and Firemaster® BZ‐54. Environmental Toxicology and Chemistry: An International Journal 29(3): 722-729. DOI: 10.1002/etc.94
Benedict, R. T., Stapleton, H. M., Letcher, R. J., & Mitchelmore, C. L. 2007. Debromination of polybrominated diphenyl ether-99 (BDE-99) in carp (Cyprinus carpio) microflora and microsomes. Chemosphere 69(6): 987-993. DOI: 10.1016/j.chemosphere.2007.05.010
Birnbaum, L. S., & Staskal, D. F. 2004. Brominated flame retardants: cause for concern? Environmental Health Perspectives 112(1): 9-17.
Brits, M., de Vos, J., Weiss, J. M., Rohwer, E. R., & de Boer, J. 2016. Critical review of the analysis of brominated flame retardants and their environmental levels in Africa. Chemosphere 164: 174-189. DOI: 10.1016/j.chemosphere.2016.08.097
Browne, E. P., Stapleton, H. M., Kelly, S. M., Tilton, S. C., & Gallagher, E. P. 2009. In vitro hepatic metabolism of 2, 2′, 4, 4′, 5-pentabromodiphenyl ether (BDE 99) in Chinook Salmon (Onchorhynchus tshawytscha). Aquatic Toxicology 92(4): 281-287. DOI: 10.1016/j.aquatox.2009.02.017
Chen, H., Tang, X., Zhou, B., Xu, N., & Wang, Y. 2016. Mechanism of Deca-BDE-induced apoptosis in Neuro-2a cells: Role of death-receptor pathway and reactive oxygen species-mediated mitochondrial pathway. Journal of Environmental Sciences 46: 241-251. DOI: 10.1016/j.jes.2016.02.015
Cho, J. H., Lee, S., Jeon, H., Kim, A. H., Lee, W., Lee, Y., Yang, S., Yun J., Jung, Y.-S. & Lee, J. 2020. Tetrabromobisphenol A-Induced Apoptosis in Neural Stem Cells Through Oxidative Stress and Mitochondrial Dysfunction. Neurotoxicity Research 30: 74-85. DOI: 10.1007/s12640-020-00179-z
Chou, C. T., Hsiao, Y. C., Ko, F. C., Cheng, J. O., Cheng, Y. M., & Chen, T. H. 2010. Chronic exposure of 2, 2′, 4, 4′-tetrabromodiphenyl ether (PBDE-47) alters locomotion behavior in juvenile zebrafish (Danio rerio). Aquatic Toxicology 98(4): 388-395. DOI: 10.1016/j.aquatox.2010.03.012
Costa, L. G., Pellacani, C., Dao, K., Kavanagh, T. J., & Roque, P. J. 2015. The brominated flame retardant BDE-47 causes oxidative stress and apoptotic cell death in vitro and in vivo in mice. Neurotoxicology 48: 68-76. DOI: 10.1016/j.neuro.2015.03.008
Covaci, A., Gerecke, A. C., Law, R. J., Voorspoels, S., Kohler, M., Heeb, N. V., Leslie, H., Allchin, C. R. & De Boer, J. 2006. Hexabromocyclododecanes (HBCDs) in the environment and humans: a review. Environmental Science & Technology 40(12): 3679-3688. DOI: 10.1021/es0602492
De Wit, C.A. 2002. An overview of brominated flame retardants in the environment. Chemosphere 46(5) 583-624. DOI: 10.1016/S0045-6535(01)00225-9
De Wit, M., Keil, D., Remmerie, N., van der Ven, K., van den Brandhof, E. J., Knapen, D., Witters, E., & De Coen, W. 2008. Molecular targets of TBBFA in zebrafish analysed through integration of genomic and proteomic approaches. Chemosphere 74(1): 96-105. DOI: 10.1074/mcp.M114.038299
Deng, J., Yu, L., Liu, C., Yu, K., Shi, X., Yeung, L. W., Lam, P.K.S, Wu, R.S.S., & Zhou, B. 2009. Hexabromocyclododecane-induced developmental toxicity and apoptosis in zebrafish embryos. Aquatic Toxicology 93(1): 29-36. DOI: 10.1016/j.aquatox.2009.03.001
Dong, H., Lu, G., Yan, Z., Liu, J., Nkoom, M., & Yang, H. (2018). Responses of antioxidant and biotransformation enzymes in Carassius carassius exposed to hexabromocyclododecane. Environmental Toxicology and Pharmacology 62: 46-53. DOI: 10.1016/j.etap.2018.06.009
Du, M., Fang, C., Qiu, L., Dong, S., Zhang, X., & Yan, C. (2015). Diastereoisomer-specific effects of hexabromocyclododecanes on hepatic aryl hydrocarbon receptors and cytochrome P450s in zebrafish (Danio rerio). Chemosphere 132: 24-31. DOI: 10.1016/j.chemosphere.2015.02.049
Espinosa Ruiz, C. E., Manuguerra, S., Cuesta, A., Esteban, M. A., Santulli, A., & Messina, C. M. 2019a. Sub-lethal doses of polybrominated diphenyl ethers affect some biomarkers involved in energy balance and cell cycle, via oxidative stress in the marine fish cell line SAF-1. Aquatic Toxicology 210, 1-10. DOI: 10.1016/j.aquatox.2019.02.014
Espinosa Ruiz, C. E., Manuguerra, S., Cuesta, A., Santulli, A., & Messina, C. M. 2019b. Oxidative stress, induced by sub-lethal doses of BDE 209, promotes energy management and cell cycle modulation in the marine fish cell line SAF-1. International Journal of Environmental Research and Public Health 16(3): 474. DOI: 10.3390/ijerph16030474
Espinosa Ruiz, C. E., Manuguerra, S., Curcuraci, E., Santulli, A., & Messina, C. M. 2020. Carbamazepine, cadmium chloride and polybrominated diphenyl ether-47, synergistically modulate the expression of antioxidants and cell cycle biomarkers, in the marine fish cell line SAF-1. Marine Environmental Research 154: 104844. DOI: 10.1016/j.marenvres.2019.104844
Feng, M., Li, Y., Qu, R., Wang, L., & Wang, Z. 2013a. Oxidative stress biomarkers in freshwater fish Carassius auratus exposed to decabromodiphenyl ether and ethane, or their mixture. Ecotoxicology 22(7): 1101-1110. DOI: 10.1007/s10646-013-1097-2
Feng, M., Qu, R., Wang, C., Wang, L., & Wang, Z. 2013b. Comparative antioxidant status in freshwater fish Carassius auratus exposed to six current-use brominated flame retardants: a combined experimental and theoretical study. Aquatic Toxicology 140: 314-323. DOI: 10.1007/s10646-013-1097-2
Feng, M., Qu, R., Li, Y., Wei, Z., & Wang, Z. 2014. Biochemical biomarkers in liver and gill tissues of freshwater fish Carassius auratus following in vivo exposure to hexabromobenzene. Environmental Toxicology 29(12): 1460-1470. DOI: 10.1002/tox.21876
Ghosh, R., Lokman, P. M., Lamare, M. D., Metcalf, V. J., Burritt, D. J., Davison, W., & Hageman, K. J. 2013. Changes in physiological responses of an Antarctic fish, the emerald rock cod (Trematomus bernacchii), following exposure to polybrominated diphenyl ethers (PBDEs). Aquatic Toxicology 128: 91-100. DOI: 10.1016/j.aquatox.2012.11.019
Giraudo, M., Douville, M., Letcher, R. J., & Houde, M. 2017. Effects of food-borne exposure of juvenile rainbow trout (Oncorhynchus mykiss) to emerging brominated flame retardants 1, 2-bis (2, 4, 6-tribromophenoxy) ethane and 2-ethylhexyl-2, 3, 4, 5-tetrabromobenzoate. Aquatic Toxicology 186: 40-49. DOI: 10.1016/j.aquatox.2017.02.023
He, M. J., Luo, X. J., Yu, L. H., Wu, J. P., Chen, S. J., & Mai, B. X. 2013. Diasteroisomer and enantiomer-specific profiles of hexabromocyclododecane and tetrabromobisphenol A in an aquatic environment in a highly industrialized area, South China: vertical profile, phase partition, and bioaccumulation. Environmental Pollution 179: 105-110. DOI: 10.1016/j.envpol.2013.04.016
Hong, H., Li, D., Shen, R., Wang, X., & Shi, D. 2014. Mechanisms of hexabromocyclododecanes induced developmental toxicity in marine medaka (Oryzias melastigma) embryos. Aquatic Toxicology 152: 173-185. DOI: 10.1016/j.aquatox.2014.04.010
Hu, J., Liang, Y., Chen, M., & Wang, X. 2009. Assessing the toxicity of TBBFA and HBCD by zebrafish embryo toxicity assay and biomarker analysis. Environmental Toxicology: An International Journal 24(4): 334-342. DOI: 10.1002/tox.20436
Iqbal, M., Syed, J. H., Katsoyiannis, A., Malik, R. N., Farooqi, A., Butt, A., Li, J., Zhang, G., Cincinelli, A., & Jones, K. C. 2017. Legacy and emerging flame retardants (FRs) in the freshwater ecosystem: A review. Environmental Research 152: 26-42. DOI: 10.1016/j.envres.2016.09.024
Kling, P., Norman, A., Andersson, P. L., Norrgren, L., & Förlin, L. 2008. Gender-specific proteomic responses in zebrafish liver following exposure to a selected mixture of brominated flame retardants. Ecotoxicology and Environmental Safety 71(2): 319-327. DOI: 10.1016/j.ecoenv.2007.12.010
Lema, S. C., Schultz, I. R., Scholz, N. L., Incardona, J. P., & Swanson, P. 2007. Neural defects and cardiac arrhythmia in fish larvae following embryonic exposure to 2, 2′, 4, 4′-tetrabromodiphenyl ether (PBDE 47). Aquatic Toxicology 82(4): 296-307. DOI: 10.1016/j.aquatox.2007.03.002
Linhartova, P., Gazo, I., Shaliutina‐Kolesova, A., Hulak, M., & Kaspar, V. 2015. Effects of tetrabrombisphenol A on DNA integrity, oxidative stress, and sterlet (Acipenser ruthenus) spermatozoa quality variables. Environmental Toxicology 30(7): 735-745. DOI: 10.1002/tox.21953
Livingstone, D. R. 2003. Oxidative stress in aquatic organisms in relation to pollution and aquaculture. Revue de Medecine Veterinaire 154(6): 427-430.
Lushchak, V.I. 2011. Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology 101(1): 13-30. DOI: 10.1016/j.aquatox.2010.10.006
Macaulay, L. J., Bailey, J. M., Levin, E. D., & Stapleton, H. M. 2015. Persisting effects of a PBDE metabolite, 6-OH-BDE-47, on larval and juvenile zebrafish swimming behavior. Neurotoxicology and Teratology 52: 119-126. DOI: 10.1016/j.ntt.2015.05.002
Malkoske, T., Tang, Y., Xu, W., Yu, S., & Wang, H. 2016. A review of the environmental distribution, fate, and control of tetrabromobisphenol A released from sources. Science of the Total Environment 569: 1608-1617. DOI: 10.1016/j.scitotenv.2016.06.062
Milovanovic, V., Buha, A., Matovic, V., Curcic, M., Vucinic, S., Nakano, T., & Antonijevic, B. 2018. Oxidative stress and renal toxicity after subacute exposure to decabrominated diphenyl ether in Wistar rats. Environmental Science and Pollution Research 25(8): 7223-7230. DOI: 10.1007/s11356-015-5921-5
Noyes, P.D., & Stapleton, H.M. 2014. PBDE flame retardants: Toxicokinetics and thyroid hormone endocrine disruption in fish. Endocrine Disruptors 2(1): e29430. DOI: 10.4161/endo.29430
Olsvik, P. A., Lie, K. K., Sturve, J., Hasselberg, L., & Andersen, O. K. (2009). Transcriptional effects of nonylphenol, bisphenol A and PBDE-47 in liver of juvenile Atlantic cod (Gadus morhua). Chemosphere 75(3): 360-367. DOI: 10.1016/j.chemosphere.2008.12.039
Pantelaki, I., & Voutsa, D. 2019. Organophosphate flame retardants (OPFRs): A review on analytical methods and occurrence in wastewater and aquatic environment. Science of the Total Environment 649: 247-263. DOI: 10.1016/j.scitotenv.2018.08.286
Pereira, L. C., de Souza, A. O., & Dorta, D. J. 2013. Polybrominated diphenyl ether congener (BDE‐100) induces mitochondrial impairment. Basic & Clinical Pharmacology & Toxicology 112(6): 418-424. DOI: 10.1111/bcpt.12046
Ronisz, D., Finne, E. F., Karlsson, H., & Förlin, L. 2004. Effects of the brominated flame retardants hexabromocyclododecane (HBCDD), and tetrabromobisphenol A (TBBFA), on hepatic enzymes and other biomarkers in juvenile rainbow trout and feral eelpout. Aquatic Toxicology 69(3): 229-245. DOI: 10.1016/j.aquatox.2004.05.007
Segev, O., Kushmaro, A., & Brenner, A. 2009. Environmental impact of flame retardants (persistence and biodegradability). International Journal of Environmental Research and Public Health 6(2): 478-491. DOI: 10.3390/ijerph6020478
Sevcikova, M., Modra, H., Slaninova, A., & Svobodova, Z. 2011. Metals as a cause of oxidative stress in fish: a review. Veterinarni Medicina 56(11): 537-546. DOI: 10.17221/4272-VETMED
Shao, J., Eckert, M. L., Lee, L. E. J., & Gallagher, E. P. 2008. Comparative oxygen radical formation and toxicity of BDE 47 in rainbow trout cell lines. Marine Environmental Research 66(1): 7-8. DOI: 10.1016/j.marenvres.2008.02.007
Sharma, P., Chadha, P., & Saini, H. S. 2019. Tetrabromobisphenol A induced oxidative stress and genotoxicity in fish Channa punctatus. Drug and Chemical Toxicology 42(6): 559-564. DOI: 10.1080/01480545.2018.1441864
Shen, M., Cheng, J., Wu, R., Zhang, S., Mao, L., & Gao, S. 2012. Metabolism of polybrominated diphenyl ethers and tetrabromobisphenol A by fish liver subcellular fractions in vitro. Aquatic Toxicology 114: 73-79. DOI: 10.1016/j.aquatox.2012.02.010
Shi, H., Wang, X., Luo, Y., & Su, Y. 2005. Electron paramagnetic resonance evidence of hydroxyl radical generation and oxidative damage induced by tetrabromobisphenol A in Carassius auratus. Aquatic Toxicology 74(4): 365-371. DOI: 10.1016/j.aquatox.2005.06.009
Slaninova, A., Smutna, M., Modra, H., & Svobodova, Z. 2009. REVIEWS Oxidative stress in fish induced by pesticides. Neuroendocrinology Letters 30(1): 2.
Tang, B., Zeng, Y. H., Luo, X. J., Zheng, X. B., & Mai, B. X. 2015. Bioaccumulative characteristics of tetrabromobisphenol A and hexabromocyclododecanes in multi-tissues of prey and predator fish from an e-waste site, South China. Environmental Science and Pollution Research 22(16): 12011-12017. DOI: 10.1007/s11356-015-4463-1
Tomy, G. T., Palace, V. P., Halldorson, T., Braekevelt, E., Danell, R., Wautier, K., Evans, B., Brinkworth, L., & Fisk, A. T. 2004. Bioaccumulation, biotransformation, and biochemical effects of brominated diphenyl ethers in juvenile lake trout (Salvelinus namaycush). Environmental Science & Technology 38(5): 1496-1504. DOI: 10.1021/es035070v
Truong, L., Mandrell, D., Mandrell, R., Simonich, M., & Tanguay, R.L. 2014. A rapid throughput approach identifies cognitive deficits in adult zebrafish from developmental exposure to polybrominated flame retardants. Neurotoxicology 43: 134-142. DOI: 10.1016/j.neuro.2014.03.005
Usenko, C. Y., Abel, E. L., Kudela, M., Janise, A., & Bruce, E. D. 2015. Comparison of PBDE congeners as inducers of oxidative stress in zebrafish. Environmental Toxicology and Chemistry 34(5): 1154-1160. DOI: 10.1002/etc.2922
Usenko, C. Y., Abel, E. L., Hopkins, A., Martinez, G., Tijerina, J., Kudela, M., Norris, N., Joudeh, L., & Bruce, E. D. 2016. Evaluation of common use brominated flame retardant (BFR) toxicity using a zebrafish embryo model. Toxics 4(3): 21. DOI: 10.3390/toxics4030021
Wang, X., Wei, L., Wang, Y., He, B., Kong, B., Zhu, J., Jin, Y., & Fu, Z. 2019. Evaluation of development, locomotor behavior, oxidative stress, immune responses and apoptosis in developing zebrafish (Danio rerio) exposed to DBECH (tetrabromoethylcyclohexane). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 217: 106-113. DOI: 10.1016/j.cbpc.2018.12.004
Watanabe, I., & Sakai, S.I. 2003. Environmental release and behavior of brominated flame retardants. Environment International 29(6): 665-682. DOI: 10.1016/S0160-4120(03)00123-5
Winston, G. W., & Di Giulio, R. T. 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquatic Toxicology 19(2): 137-161. DOI: 10.1016/0166-445X(91)90033-6
Wu, S., Ji, G., Liu, J., Zhang, S., Gong, Y., & Shi, L. 2016. TBBFA induces developmental toxicity, oxidative stress, and apoptosis in embryos and zebrafish larvae (Danio rerio). Environmental Toxicology 31(10): 1241-1249. DOI: 10.1002/tox.22131
Wu, S., Wu, M., Qi, M., Zhong, L., & Qiu, L. 2018. Effects of novel brominated flame retardant TBBPA on human airway epithelial cell (A549) in vitro and proteome profiling. Environmental Toxicology 33(12): 1245-1253. DOI: 10.1002/tox.22632
Wu, Z., Han, W., Yang, X., Li, Y., & Wang, Y. (2019). The occurrence of polybrominated diphenyl ether (PBDE) contamination in soil, water/sediment, and air. Environmental Science and Pollution Research International 26(23): 23219-23241. DOI: 10.1007/s11356-019-05768-w
Xie, Z., Lu, G., & Qi, P. 2014. Effects of BDE-209 and its mixtures with BDE-47 and BDE-99 on multiple biomarkers in Carassius auratus. Environmental Toxicology and Pharmacology 38(2): 554-561. DOI: 10.1016/j.etap.2014.08.008
Xiong, P., Yan, X., Zhu, Q., Qu, G., Shi, J., Liao, C., & Jiang, G. 2019. A review of environmental occurrence, fate, and toxicity of novel brominated flame retardants. Environmental Science & Technology 53(23): 13551-13569. DOI: 10.1021/acs.est.9b03159
Yan, C., Huang, D., & Zhang, Y. 2011. The involvement of ROS overproduction and mitochondrial dysfunction in PBDE-47-induced apoptosis on Jurkat cells. Experimental and Toxicologic Pathology 63(5): 413-417. DOI: 10.1016/j.etp.2010.02.018
Yang, S., Xu, F., Zheng, B., Wu, F., & Wang, S. 2013b. Multibiomarker responses upon exposure to tetrabromobisphenol A in the freshwater fish Carassius auratus. Aquatic Toxicology 142: 248-256. DOI: 10.1016/j.aquatox.2013.08.013
Yang, S. W., Wang, S. R., Yan, Z. G., & Zhang, P. Q. 2012. Tissue distribution and bioconcentration factors of tetrabromobisphenol A in five fishes in lake Chaohu. Huan jing ke xue= Huanjing kexue 33(6): 1852-1857.
Yu, L., Han, Z., & Liu, C. 2015. A review on the effects of PBDEs on thyroid and reproduction systems in fish. General and Comparative Endocrinology 219: 64-73. DOI: 10.1016/j.ygcen.2014.12.010
Zeng, Y. H., Luo, X. J., Zheng, X. B., Tang, B., Wu, J. P., & Mai, B. X. 2014. Species-specific bioaccumulation of halogenated organic pollutants and their metabolites in fish serum from an e-waste site, South China. Archives of Environmental Contamination and Toxicology 67(3): 348-357. DOI: 10.1007/s00244-014-0040-8.
Zhang, J., Williams, T. D., Abdallah, M. A. E., Harrad, S., Chipman, J. K., & Viant, M. R. 2015. Transcriptomic and metabolomic approaches to investigate the molecular responses of human cell lines exposed to the flame retardant hexabromocyclododecane (HBCD). Toxicology in Vitro 29(8): 2116-2123. DOI: 10.1016/j.tiv.2015.08.017
Zhang, X., Yang, F., Zhang, X., Xu, Y., Liao, T., Song, S., & Wang, J. 2008. Induction of hepatic enzymes and oxidative stress in Chinese rare minnow (Gobiocypris rarus) exposed to waterborne hexabromocyclododecane (HBCDD). Aquatic Toxicology 86(1): 4-11. DOI: 10.1016/j.aquatox.2007.07.002
Zhang, Y., Wang, X., Chen, C., An, J., Shang, Y., Li, H., Xia, H., Yu, J., Wang C., Liu Y., & Guo, S. 2019. Regulation of TBBPA-induced oxidative stress on mitochondrial apoptosis in L02 cells through the Nrf2 signaling pathway. Chemosphere 226: 463-471. DOI: 10.1016/j.chemosphere.2019.03.167
Zhao, J., Xu, T., & Yin, D. Q. 2014. Locomotor activity changes on zebrafish larvae with different 2, 2′, 4, 4′-tetrabromodiphenyl ether (PBDE-47) embryonic exposure modes. Chemosphere 94: 53-61. DOI: 10.1016/j.chemosphere.2013.09.010
Zhou, Z., Zhou, B., Chen, H., Tang, X., & Wang, Y. 2019. Reactive oxygen species (ROS) and the calcium-(Ca2+) mediated extrinsic and intrinsic pathways underlying BDE-47-induced apoptosis in rainbow trout (Oncorhynchus mykiss) gonadal cells. Science of The Total Environment 656: 778-788. DOI: 10.1016/j.scitotenv.2018.11.306

Descargas

Publicado

2021-03-30

Cómo citar

Gónzalez-Rivera, R. M., Espinosa-Aguirre, J. J., & Olivares-Rubio, H. F. (2021). Estrés oxidativo en peces inducido por retardantes de flama bromados, una revisión. HIDROBIOLÓGICA, 31(1). https://doi.org/10.24275/uam/izt/dcbs/hidro/2021v31n1/Gonzalez

Número

Sección

Artículos de Revisión