Los probióticos y sus metabolitos en la acuicultura. Una Revisión
DOI:
https://doi.org/10.24275/uam/izt/dcbs/hidro/2020v30n1/PerezPalabras clave:
acuicultura, metabolitos, probióticosResumen
Antecedentes: Actualmente la acuicultura produce la mitad del pescado que se consume en el mundo. En México esta actividad debe de tender a la sustentabilidad, propiciando que los medios de producción y los productos obtenidos incrementen su calidad y cantidad, se diversifiquen y disminuyan su impacto ambiental. Objetivos: Analizar la información referente al uso de probióticos en la acuicultura y su perspectiva actual de desarrollo en México. Métodos: Se compiló la literatura disponible sobre probióticos en procesos acuaculturales, con énfasis en la evaluación de los efectos positivos en la producción, inocuidad, seguridad alimentaria y sustentabilidad. Resultados: La información analizada permite establecer que, la resistencia de los microorganismos patógenos a antibióticos se ha vuelto un problema en esta actividad cuando se desea prevenir o tratar enfermedades en las especies cultivadas. En la acuicultura, los probióticos han demostrado tener grandes beneficios, como estimular la respuesta inmune, incrementar la sobrevivencia de las larvas, el apetito y la resistencia a enfermedades, mejorar el crecimiento, rendimiento y producción y reducir significativamente la producción de residuos contaminantes. Los probióticos más utilizados son las bacterias ácido lácticas y sus metabolitos como las bacteriocinas, sin embargo, también se utilizan otros géneros de bacterias como: Bacillus y Streptomyces, además de microalgas y levaduras. Conclusiones. En México, la investigación y uso de probióticos en procesos de producción acuícola debe reforzarse, ya que representan un gran potencial social, económico y ecológico-ambiental y los sectores involucrados deben de poner especial atención al respecto, dados los resultados exitosos obtenidos en otras regiones del mundo.
Descargas
Citas
Abarike, E. D., J. Caia, Y. Lua, H. Yua, L. Chend, J. Jiana, J. Tanga, L. Jund, K.A. Kuebutornye. 2018. Effects of a commercial probiotic BS containing Bacillus subtilis and Bacillus licheniformis on growth, immune response and disease resistance in Nile tilapia, Oreochromis niloticus. Fish and Shellfish Immunology 82: 229-238. DOI:10.1016/j. fsi.2018.08.037
Ahmed, E. & S. J. Holmstrom. 2014. Siderophores in environmental research: roles and applications. Microbial Biotechnology 7:196-208. DOI: 10.1111/1751- 7915.12117
Álvarez-Cisneros, Y. M., F. J. Fernández & E. P. Alquicira. 2017. Characteristics of antibacterial peptides produced by bacteria. In: MéndezVilas, A. (ed.). Antimicrobial research: Novel bioknowledge and educational programs. Formatex research center, pp. 35-45.
Amir, I., A. Zuberi, M. Kamran, M. Imran, M.U.H. Murtaza. 2019. Evaluation of commercial application of dietary encapsulated probiotic (Geotrichum candidum QAUGC01): Effect on growth and immunological indices of rohu (Labeo rohita, Hamilton 1822) in semi-intensive culture system. Fish and Shellfish Immunology 95: 464-472. DOI:10/1016/j.fsi.2019.11.011
Anuario Estadístico de Pesca. 2011 Anuario Estadístico de Acuacultura y Pesca 201. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. México. 305 p.
Aponte-Ubillus, J., J. L. León Quispe, R. Rojas Durán, S. Montero Trujillo & L. Loayza Salazar. 2015. Actividad antimicrobiana y sinérgica de metabolitos producidos por Streptomyces erythrogriseus cepa M10-77 de origen marino. Revista de la Sociedad Venezolana de Microbiología 35: 13-19.
Balcazar, J. L., I. de Blas, I. Ruiz-Zarzuela, D. Cunningham, D. Vendrell y J. L. Muzquiz. 2006. The role of probiotics in aquaculture. Veterinary Microbiology 114:173-186. DOI: 10.1016/j.vetmic.2006.01.009
Banerjee, G. & R. A. Kumar. 2017. The advancement of probiotics research and its application in fish farming industries. Research in Veterinary Sciences 115: 66-77. DOI: 10.1016/j.rvsc.2017.01.016
Carta Nacional Acuicola. 2012. Actualización de la Carta Nacional Acuícola (segunda sección). Diario Oficial de la Federación. México. Septiembre 9: 33-112.
Castañeda Guillot, C. 2018. Probióticos, puesta al día. Revista Cubana de Pediatría 90: 286-298.
Comisión Nacional de Acuacultura y Pesca. 2017. Anuario Estadístico de Acuacultura y Pesca 2017. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Comisión Nacional de Pesca. México. 234 p. También disponible en la página web: https://www.gob.mx/conapesca/documentos/anuario-estadistico-de-acuacultura-y-pesca
Cha, J. H., S. Rahimnejad, S. Y, Yang, K. W. Kim & K. J. Lee. 2013. Evaluations of Bacillus spp. as dietary additives on growth performance, innate immunity and disease resistance of olive flounder (Paralichthys olivaceus) against Streptococcus iniae and as water additives. Aquaculture 402-403: 50-57. DOI:10.1016/j.aquaculture.2013.03.030
Cheng, G., H. Hao, S. Xie, X. Wang, M. Dai, L. Huang & Z. Yuan. 2014. Antibiotic alternatives: the substitution of antibiotics in animal husbandry. Frontiers in microbiology 106:606-622. DOI:10.3389/fmicb.2014.00217
Christensen, A. & G. D. Martin. 2017. Identification and bioactive potential of marin microorganisms from selected Florida coastal areas. Microbiology Open 6 (4): e00448. DOI: 10.1002/mbo3.448.
Daniel, N. & P. Nageswari. 2017. Exogenous probiotics on biofloc based Aquaculture: A Review. Current Agriculture Research Journal 5 (1): 88-107.
Daniels, C. L., D. L. Merrifield, E. Ringø & S. J. Davies. 2013. Probiotic, prebiotic and synbiotic applications for the improvement of larval European lobster (Homarus gammarus) culture. Aquaculture 416- 417: 396-406. DOI: 10.1016/j.aquaculture.2013.08.001
Del´Duca, A., C. D. Evangelista, D. C. Galuppo & P. C. Abreu. 2013. Evaluation of the presence and efficiency of potential probiotic bacteria in the gut of tilapia (Oreochromis niloticus) using the fluorescent in situ hybridization technique. Aquaculture 388-391: 115-121. DOI:10.1016/j.aquaculture.2013.01.019
Desriac, F., D. Defer, N. Bourgougnon, B. Brillet, P. Le Chevalier & Y. Fleury. 2010. Bacteriocin as weapons in the marine animal-associated bacteria warfare: inventory and potential applications as an aquaculture probiotic. Marine drugs 8 (4): 1153-1177. DOI:10.3390/ md8041153.
Dharmaraj, S., & K. Dhevendaran, 2010. Evaluation of Streptomyces as a probiotic feed for the growth of ornamental fish Xiphophorus helleri. Food Technology and Biotechnology 48 (4): 497-504. DOI:10.3856/ vol43-issue1-fulltext-11
Dharmaraj, S., & K. Dhevendaran, 2010. Evaluation of Streptomyces as a probiotic feed for the growth of ornamental fish Xiphophorus helleri. Food Technology and Biotechnology 48 (4): 497-504. DOI:10.3856/ vol43-issue1-fulltext-11
EIahwany, A., H. A. Ghozlan, H. A. ElSharif & S. A. Sabry. 2015. Phylogenetic diversity and antimicrobial activity of marine bacteria associated with the soft coral Sarcophyton glaucum. Journal of basic microbiology 55 (1): 2-10. DOI:10.1002/jobm.201300195.
Evangelista-Martínez, Z., E. Quiñones-Aguilar & G. Rincón-Martínez. 2017. Potencial biotecnológico de las actinobacterias aisladas de suelos de México como fuente natural de moléculas bioactivas: compuestos antimicrobianos y enzimas hidrolíticas. Temas de Ciencia y Tecnología 21: 39-51.
FAO (Food and Agriculture Organization of the United Nations). 2018. El estado mundial de la pesca y la acuicultura. Cumplir los objetivos de desarrollo sostenible. Departamento de Pesca y Acuicultura de la FAO. Roma, Italia. 250 p. También disponible en la página web: http://www.fao.org/3/i9540es/I9540ES.pdf
FAO/WHO (Food and Agriculture Organization of the United Nations- World Health Organization). 2001. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Food and Agriculture Organization and World Health Organization Joint report. Disponible en línea en: http://www.fao.org/3/aa0512e.pdf (consultado el 7 febrero 2018).
FAO (Food and Agricult ure Organizat ion of the United Nations). 2005. Visión general del sector acuícola nacional. México. Departamento de Pesca y Acuicultura de la FAO. Roma, Italia. 21 p. Tambien disponible en la página: http://www.fao.org/fishery/countrysector/ naso_mexico/es#tcN700C5
Ferreira, G. S., N. C. Bolívar, S. A. Pereira, C. Guertler, F. D. N. Vieira, J. L. P. Mouriño & W. Q. Seiffert. 2015. Microbial biofloc as source of probiotic bacteria for the culture of Litopenaeus vannamei. Aquaculture 448: 273-279. DOI:10.1016/j.aquaculture.2015.06.006
García-Bernal, M., A. I. Campa-Córdova, P. E. Saucedo, M. Casanova-González, R. Medina-Marrero & J. M. Mazón-Suástegui. 2015. Isolation and in vitro selection of actinomycetes strain as potential probiotics for aquaculture. Veterinary World 8 (2): 170-176. DOI:0I.10.14202/vetworld.2015.170-176.
Gatesoupe, F. J. 1994. Lactic acid bacteria increase the resistance of turbor larvae. Scophthalmus maximus, against pathogenic Vibrio. Aquatic Living Resource 7:277-282.
Gatesoupe, F. J. 1997. Siderophore production and probiotic effect of Vibrio sp. Associated with turbot larvae, Scophthalmus maximus. Aquatic Living Resource 10: 239-246.
Gibson, G. R. & M. B. Roberfroid. 1995 Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. Journal of Nutrition 125: 1401-1412. DOI:10.12691/jfnr-1-3-1
Gillor, O., A. Etzion & M. A Riley. 2008. The dual role of bacteriocins as anti-and probiotics. Applied microbiology and biotechnology 81 (4): 591-606. DOI:10.1007/s00253-008-1726-5.
Gioacchini, G., F. Maradonna, F. Lombardo, D. Bizzaro, I. Olivotto & O. Carnevali. 2010. Increase of fecundity by probiotic administration in zebra fish (Danio rerio). Reproduction 140: 953-959. DOI:10.1530/REP10-0145
Gomes, L. C., R. P. Brinn, J. L. Marcon, L. A. Dantas, F. R. Brand, J. S. De Abreu, P. E. M. Lemos & D. M. Mccomb. 2009. Benefits of using the probiotic EfinolL during transportation of cardinal tetra, Paracheirodon axelrodi (Schultz), in the Amazon. Aquatic Research 40: 157-165.
Gómez-Sala, B., E. Muñoz-Atienza, J. Sánchez, A. Basanta, C. Herranz, P. E. Hernández & L. M. Cintas. 2015. Bacteriocin production by lactic acid bacteria isolated from fish, seafood and fish products. European Food Research and Technology 241 (3): 341-356. DOI.10.1007/ s00217-015-2465-3
Gram, L., J. Melchiorsen, B. Spanggaard, I. Huber & T. Nielsen. 1999. Inhibition of Vibrio anguillarum by Pseudomonas fluorescens strain AH2-a possible probiotic treatment of fish. Applied Environmental Microbiology 65: 969-973.
Guarner, F., M. E. Sanders, R. Eliakim, R. Fedorak, A. Gangl, J. Garisch, P. Kaufmann, T. Karakan, A. G. Khan, N. Kim, J. A. De-Paula, B. Ramakrishna, F. Shanahan, H. Szajewska, A. Thompson & A. Le-Mair. 2017. Probióticos y Prebióticos. Guías Mundiales de la Organización Mundial de Gastroenterología. 35 p. Tambien disponible en la página web https://www.worldgastroenterology.org/UserFiles/file/guidelines/ probiotics-and-prebiotics-spanish-2017.pdf
Hai, N. V. 2015. The use of probiotics in aquaculture. Journal of Applied Microbiology 119: 917-935. DOI:10.1111/jam.12886
Hai, N.V. & R. Fotedar. 2009. Comparison of the effects of the prebiotics (Bio-Mos and [beta]-1,3-D-glucan) and the customised probiotics (Pseudomonas synxantha and P. aeruginosa) on the culture of juvenile western king prawns (Penaeus latisulcatus Kishinouye, 1896). Aquaculture 289: 310-316. DOI:10.1016/j.aquaculture.2009.02.001
Hai, N. V., N. Buller & R. Fotedar. 2009. Effects of probiotics (Pseudomonas synxantha and P. aeruginosa) on the growth, survival and immune parameters of juvenile western king prawns (Penaeus latisulcatus Kishinouye, 1896). Aquatic Research 40: 590-602.
Hai, N. V., N. Buller & R. Fotedar. 2010. Encapsulation capacity of Artemia nauplii with customised probiotics for use in the cultivation of western king prawns (Panaeus latisulcatus Kishinouye, 1896). Aquatic Research 41: 893-903.
Hong, H. A. & S. M. Cuttings. 2005. The use of bacterial spore formers as probiotics. FEMS Microbiology Reviews 29 (4): 813-835. DOI:10/1016/j.femsre.2004.12.001
Huang, X., H. Zhou & H. Zhang. 2006. The effect of Sargassum fusiforme polysaccharide extracts on vibriosis resistance and immune activity of the shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunology 20: 750-757. DOI:10.1016/j.fsi.2005/09.008
Ibrahem, M. D. 2015. Evolution of probiotics in aquatic world: potential effects, the current status in Egypt and recent prospectives. Journal of advanced Research 6 (6): 765-791. DOI:10.1016/j. jare.2013.12.004.
Inzunza-Montoya, A. 2014. La maricultura es la industria del futuro. In: Cámara de Diputados & Poder Legislativo Federal (eds.). Acuacultura. Alternativa para la Seguridad Alimentaria. LXII Legislatura. México, 37: 13-19.
Itami, T., M. Asano, K. Tokushige, K. Kubono, A. Nakagawa, A. N. Takeno, H. Nishimura & M. Maeda. 1998. Enhancement of disease resistance of kuruma shrimp, Penaeus japonicus, after oral administration of peptidoglycan derived from Bifidobacterium thermophilum. Aquaculture 164: 277-288.
Kaktcham, P. M., J. B. Temgoua, F. N. Zambou, G. Díaz-Ruíz, C. Wacher & M. L. Pérez-Chabela. 2018. In vitro evaluation of the probiotic and safety properties of bacteriocinogenic and non-bacteriocinogenic lactic acid bacteria from the intestines of Nile tilapia and common carp for their use as probiotics in aquaculture. Probiotics and Antimicrobials Proteins 10 (1): 98-109. DOI:10.1007/s12602-017-9312-8
Kaktcham, P. M., J. B. Temgoua, F. N. Zambou, G. Díaz-Ruíz, C. Wacher & M. L. Pérez-Chabela. 2017. Qualitative analyses of the bacterial microbiota of rearing environment, tilapia and common carp cultures in earthern ponds and inhibitory activity of its lactic acid bacteria on fish spoilage and pathogenic bacteria. World Journal of Microbiology & Biotechnology 33-32:1-12. DOI:10.1007/s11274-016-2197-y
Kesarcodi-Watson, A., H. Kaspar, M. J. Lategan & L. Gibson. 2008. Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274: 1-14.
Kuebutornye, F. K., E. D. Abarike & Y. Lu. 2019. A review on the application of Bacillus as probiotics in aquaculture. Fish & shellfish immunology 87: 820-828. DOI:10.1016/j.fsi.2019.02.010
Laranja, J. L. Q., E. C. Amar, G. L. Ludevese-Pascual, Y. Niu, M. J. Geaga, P. De Schryver & P. Bossier. 2017. A probiotic Bacillus strain containing amorphous poly-beta-hydroxybutyrate (PHB) stimulates the innate immune response of Penaeus monodon postlarvae. Fish & shellfish immunology 68: 202-210. DOI:10.1016/j.fsi.2017.07.023
Lauzon, H. L., S. Gudmundsdottir, M. H. Pedersen, B. B. Budde, B. K. Gudmundsdottir. 2008. Isolation of putative probionts from cod rearing environment. Veterinary Microbiology 32: 328-339.
León, J., J. J. Aponte, R. Rojas, D. L. Cuadra, N. Ayala, G. Tomas, M. Guerrero. 2011. Estudio de actinomicetos marinos aislados de la costa central del Perú y su actividad antibacteriana frente a Staphylococcos aureus meticilina resistentes y Enterococcos faecalis vancomicina resistentes. Revista Peruana de Medicina Experimental y Salud Publica 28 (2): 237-246.
León, J., J. J. D. Aponte, N. Cuadra, L. Galindo, M. Jaramillo, M. Vallejo & E. Marguet. 2016. Actinomicetos aislados de Argopecten purpuratus productores de enzimas extracelulares y con actividad inhibitoria de patógenos marinos. Revista de Biología Marina y Oceanografía 51 (1): 69-80. DOI:10.4067/S0718-19572016000100007.
Lobos, O., A. Barrera & C. Padilla. 2017. Microorganisms of the intestinal microbiota of Oncorhynchus mykiss produce antagonistic substances against bacteria contaminating food and causing disease in humans. Italian Journal of Food Safety 6 (2). DOI:10.4081/ ijfs.2017.6240.
Luis-Villaseñor, I. E., A. I. Campa-Córdova, N. Huerta-Aldaz, A. Luna-González, J. M. Mazón-Suastegui & F. Flores-Higuera. 2013. Effect of beneficial bacteria on larval culture of Pacific whiteleg shrimp, Litopenaeus vannamei. African Journal of Microbiology Research 7 (27): 3741- 3748. DOI:10.5897/AJMR12.1360
Lyapparaj, P., T. Maruthiah, R. Ramasubburayan, S. Prakash, C. Kumar, G. Immanuel & A. Palavesam. 2013. Optimization of bacteriocin production by Lactobacillus sp. MSU3IR against shrimp bacterial pathogens. Aquatic biosystems 9 (1): 12. DOI:10.1186/2046-9063-9-12.
Madani, N. S. H., T. J. Adorian, H. Ghafari-Farsani & S. H. Hoseinifar. 2018. The effects of dietary probiotic Bacilli (Bacillus subtilis and Bacillus licheniformis) on growth performance, feed efficiency, body composition and immune parameters of whiteleg shrimp (Litopenaeus vannamei) postlarvae. Aquaculture Research 49: 1926-1933. DOI:10.1111/are.13648.
Marques, A., T. H. Thanh, P. Sorgeloos, P. Bossier. 2006. Use of microalgae and bacteria to enhance protection of gnotobiotic Artemia against different pathogens. Aquaculture 258: 116-126. DOI:10.1016/j. aquaculture.2006.004.021
Martínez, Z. E., E. E. Q. Aguilar, G. R. Enríquez. 2017. Potencial biotecnológico de las actinobacterias aisladas de suelos de México como fuente natural de moléculas bioactivas: compuestos antimicrobianos y enzimas hidrolíticas. Temas de Ciencia y Tecnología 21(63): 39-51.
Monroy-Dosta, M. C., T. Castro-Barrera, J. Castro-Mejía, G. Castro-Mejía & R. De Lara-Andrade. 2012. Beneficios del uso de la flora bacteriana intestinal de los organismos acuáticos. Contactos 85:11-18.
Muñoz-Atienza, E., B. Gómez-Sala, C. Araújo, C. Campanero, R. Del Campo, P. E. Hernández & L. M. Cintas. 2013. Antimicrobial activity, antibiotic susceptibility and virulence factors of lactic acid bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC microbiology 13 (1): 15. DOI:10.1186/1471-2180-13-15.
Nass, K., T. Naess & T. Harboe. 1992. Enhanced first feeding of halibut larvae Hippoglossus hippoglossus L. in green water. Aquaculture 105: 143-156.
Nayak, S. K. 2010. Probiotics and immunity: A fish perspective. Fish Shellfish Inmunology 29: 2-14. DOI:10.1016/j.fsi.2010.02.017
Newaj-Fyzul, A., A. H. Al-Harbi & B. Austin. 2014. Review: Developments in the use of probiotics for disease control in aquaculture. Aquaculture 431: 1-11. DOI:10.1016/j.aquaculture.2013.08.026
Offret, C., F. Desriac, P. Le Chevalier, J. Mounier, C. Jégou & Y. Fleury. 2016. Spotlight on antimicrobial metabolites from the marine bacteria Pseudoalteromonas: chemodiversity and ecological significance. Marine drugs 14 (7): 129.
Pandiyan, P., D. Balaraman, R. Thirunavukkarasu, E. J. G. Gnana, K. Subaramaniyan, S. Manikkam, B. Sadayappana. 2013. Probiotics in aquaculture. Drug Invention Today 5: 55-59. DOI:10.1016/j.dit.2013.03.003
Pannu, R., S. Dahiya, V. P. Sabhlok, D. Kumar, V. Sarsar, S. K. Gahlawat. 2014. Effect of probiotics, antibiotics, and herbal extracts against fish bacterial pathogens. Ecotoxicology and Environmental Contamination 9 (1): 13-20. DOI:10.5132/eec.2014.01.002
Park, S. C., I. Shimamura, M. Fukunaga, K. Mori & T. Nakai. 2000. Isolation of bacteriophages specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for disease control. Applied Environmental Microbiology 66: 1416-1422.
Parker, R. B. 1974. Probiotics: the other half of the antibiotic story. Animal Nutrition Health 29: 4-8.
Phelan, R. W., J. A. O’Halloran, J. Kennedy, J. P. Morrissey, A. D. W. Dobson, F. O’Gara & T. M. Barbosa. 2012. Diversity and bioactive potential of endospore-forming bacteria cultured from the marine sponge Haliclona simulans. Journal of applied microbiology 112 (1): 65-78. DOI:10.1111/j.1365-2672.2011.05173.
Prakashwadekar, B. & S. M. Dharmadhikari. 2015. Screening of marine actinomycetes as probiotics for production of bacteriocin. International Journal of Current Microbiology and Applied Sciences 4 (11): 414-421.
Prieto, M. L., L. O’Sullivan, S. P. Tan, P. Mc-Loughlin, H. Hughes, P. M. O’Connor & G. E. Gardiner. 2012. Assessment of the bacteriocinogenic potential of marine bacteria reveals lichenicidin production by seaweed-derived Bacillus spp. Marine drugs 10 (10): 2280-2299. DOI:10.3390/md10102280.
Quiñones-Aguilar, E. E., Z. Evangelista-Martínez & G. Rincón-Enríquez. 2016. Los actinomicetos y su aplicación biotecnológica. Elementos 101: 59-64.
Rao, B. M. & K. V. Lalitha. 2015. Bacteriophages for aquaculture: are they beneficial or inimical. Aquaculture 437: 146-154.
Romero, M. & L. Menchan. 2013. Probióticos: nuevas líneas de investigación y aplicaciones terapeúticas en patología digestiva. Nutrición Hospitalaria 28: 46-48.
SAGARPA. 2013. Carta Nacional Acuícola 2013. Diario Oficial de la Federación. México. Septiembre 9: 1-68.
Sánchez-Ortiz, A. C., A. Luna-González, A. I. Campa-Córdova, R. Escamilla-Montes, M. C. Flores-Miranda & J. M. Mazón-Suástegui. 2015. Isolation and characterisation of potential probiotic bacteria from pustulose ark (Anadara tuberculosa) suitable for shrimp farming. Latin American Journal of Aquatic Research 43 (1): 123-136.
Solanki, R., M. Khanna & R. Lal. 2008. Bioactive compounds from marine actinomycetes. Indian Journal of microbiology 48(4): 410-431.
Srisapoome, P. & N. Areechon. 2017. Efficacy of viable Bacillus pumilus isolated from farmed fish on immune responses and increased disease resistance in Nile tilapia (Oreochromis niloticus): Laboratory and on-farm trials. Fish & Shellfish Immunology.67:199-210. DOI:10.1016/j.fsi.2017.06.018
Sorroza-Ochoa, L. 2012. Propuesta de nuevas cepas probióticas para uso en acuicultura. Tesis Doctoral, Instituto Universitario de Sanidad Animal y Seguridad Alimentaria, Universidad de las Palmas. Gran Canaria, España. 97 p.
Sun, Y. Z., H. L. Yang, K. P. Huang, J. D. Ye, C. X. Zhang. 2013. Application of autochthonous Bacillus bioencapsulated in copepod to grouper Epinephelus coioides larvae. Aquaculture 392-395: 44-50. DOI:0.1016/j.aquaculture.2013.01.037
Tan, L. T. H., K. G. Chan, L. H. Lee & B. H. Goh. 2016. Streptomyces bacteria as potential probiotics in aquaculture. Frontiers in microbiology 7: 1-8. DOI:10.3389/fmicb.2016.00079.
Van Hai, N. 2015. Research findings from the use of probiotics in tilapia aquaculture: a review. Fish Shellfish Immunology 45: 592-597. DOI: 10.1016/j.fsi. 2015.05.026.
Vendrell, D., J. L. Balcázar, I. de Blas, I. Ruiz-Zarzuela, O. Gironés, J. L. Múzquiz. 2008. Protection of rainbow trout (Oncorhynchus mykiss) from lactococcosis by probiotic bacteria. Comparative, Inmunology, Microbiology & Infectious Diseases 31: 337-345. DOI:10.1016/j. cimid.2007.04.002
Verschuere, L., G. Rombaut, P. Sorgeloos, W. Verstraete. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbial Molecular Biology Reviews 64: 655-671.
Vieira, F. N., V. F. A. Jatobá, M. J. L. Pedreira, V. E. Alano, M. Soarez, B. Correa da Silva, S. W. Quadros, M. M. Laterca & L. J. Vinatea. 2013. In vitro selection of bacteria with potential for use a probiotic in marine shrimp culture. Pesquisa Agropecuaria Brasileira 48 (8): 998-1004. DOI:10.1590/S0100-204X2013000800027
Watts, J. E., H. J. Schreier, L. Lanska & M. S. Hale. 2017. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions. Marine Drugs 15 (6): 158. DOI.10.3390/md15060158.
Yang, N. & C. Sun. 2016. The inhibition and resistance mechanism of actinonin, isolated from marine Streptomyces sp. NHF 165, against Vibrio anguillarum. Frontiers in Microbiology 7: 1467-1478. DOI:10.3389/fmicb.2016.01467
Yang, G., H. Cao, W. Jiang, B. Hu, S. Jian, C. Wen, K. Kajbaf, V. Kumar, Z. Tao, M. Peng. 2019. Dietary supplementation of Bacillus cereus as probiotics in Pengze crucian carp (Carassius auratus var. Pengze): Effects on growth performance, fillet quality, serum biochemical parameters and intestinal histology. Aquaculture Research 50 (8): 2207-2217. DOI: 10.1111/are.14102
Yi, Y., Z. Zhang, F. Zhao, H. Liu, L. Yu, J. Zha & G. Wang. 2018. Probiotic potential of Bacillus velezensis JW: antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus. Fish Shellfish Inmunology 78: 322-330. DOI:10.1016/j.fsi.2018.04.055.
Zhang, W., M. Liu & X. Dai. 2013. Biological characteristics and probiotic effect of Leuconostoc lactis strain isolated from the intestine of black porgy fish. Brazilian Journal of Microbiology 44 (3): 685-691. DOI:10.1590/S1517-83822013005000053.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, HIDROBIOLÓGICA reconoce y respeta el derecho moral de los autores, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Publicar en la revista HIDROBIOLÓGICA tiene un costo de recuperación de $500 pesos mexicanos por página en blanco y negro (aproximadamente 29 dólares americanos) y $1000 pesos por página a color (aproximadamente 58 dólares americanos).
Todos los textos publicados por HIDROBIOLÓGICA sin excepción se distribuyen amparados bajo la licencia Creative Commons 4.0Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en HIDROBIOLÓGICA (por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en HIDROBIOLÓGICA.
Para todo lo anterior, el o los autor(es) deben remitir el formato de Carta-Cesión de la Propiedad de los Derechos de la primera publicación debidamente requisitado y firmado por el autor(es). Este formato se puede enviar por correo electrónico en archivo pdf al correo: enlacerebvistahidrobiológica@gmail.com; rehb@xanum.uam.mx (Carta-Cesión de Propiedad de Derechos de Autor).
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.