Production of clone polyps of the model organism Exaiptasia diaphana (Rapp, 1829)

Autores

  • Jacqueline Rivera-Ortega 1 Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México
  • Patricia E. Thomé Molecular Microbiology Laboratory, Unidad Académica de Sistemas Arrecifales Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México

Palavras-chave:

Aiptasia, clonal polyps, model organism, pedal laceration

Resumo

Background. The sea anemone Exaiptasia diaphana (Order Actiniaria) is an ideal model organism to study diverse biological, physiological, and immune processes in corals (Order Scleractinia) due to its close phyletic relationship and shared traits. E. diaphana is widely distributed along the world’s tropical coastal areas. This species is easy to grow in aquariums under diverse experimental conditions since reproduces asexually and can be rendered aposymbiotic. However, there are a variety of methods to propagate them, making difficult comparisons of results. A standardized propagation protocol for E. diaphana can also contribute to improving the understanding of its biology. Goal. Determine the most rapid method of clonal production in controlled conditions. Results. In the micro-laceration treatment, 50% of the remnant tissue gave rise to a new clonal polyp, while all the amputated anemones resulted in two polyps with tentacles and a pedal disc. Amputated clonal polyps developed their tentacles from the third day, being this treatment the most rapid compared with the control group and the micro-laceration treatment. In both cases, the tentacles started to develop from the sixth day of the experiment. The control group naturally released five clonal polyps with tentacles in the ten-day experiment Conclusion. Transversal amputation was the most rapid method to obtain developed clonal polyps. We, therefore, propose transversal amputation as a standard method for the efficient artificial propagation of the clonal polyps of the model organism E. diaphana.

Downloads

Não há dados estatísticos.

Referências

Baumgarten, S., O. Simakov, L. Y. Escherick & C. R. Voolstra. 2015. The genome of Aiptasia, a sea anemone model for coral symbiosis. The Proceedings of the National Academy of Sciences. 112(38):11893- 11898. DOI: 10.1073/pnas.1513318112

Cary, L. R. 1911. A study of pedal laceration in actinians. The Biological Bulletin. 20(2): 81-106.

Cook, C. B., C. F. D’Elia & G. Muller-Parker. 1998. Host feeding and nutrient sufficiency for zooxanthellae in the sea anemone Aiptasia pallida. Marine Biology. 98:253-262. DOI: 10.1007/BF00391203

Costa-Leal, M., C. Nunes, S. Engrola, M. T. Dinis & R. Calado. 2012. Optimization of monoclonal production of the glass anemone Aiptasia pallida (Agassiz in Verrill, 1964). Aquaculture. 354-355:91-96. DOI: 10.1016/j.aquaculture.2012.03.035

Dungan, A. M., L. M. Hartman, G. Tortorelli, R. Belderok, A. M. Lamb, L. Pisan, G. I. McFadden, L. L. Blackall & J. van Oppen. 2020. Exaiptasia diaphana from the great barrier reef: a valuable resource for coral symbiosis research. Symbiosis. 80:195-206. DOI: 10.1007/ s13199-020-00665-0

Grawunder, D., E. A. Hambleton, M. Bucher, I. Wolfowicz, N. Bechtoldt & A. Guse. 2015. Induction of gametogenesis in the Cnidarian endosymbiosis model Aiptasia sp. Scientific Reports. 5, 15677. DOI: 10.1038/srep15677

Hambleton, E. A., A. Guse & J. R. Pringle. 2014. Similar specificities of symbiont uptake by adults and larvae in an anemone model system for coral biology. Journal of Experimental Biology. 217:1613-9. DOI: 10.1242/jeb.095679

Hoegh-Guldberg O, P.J. Mumby, A. J. Hooten, R. S. Steneck, P. Greenfield, E. Gomez, C. D. Harvell, P. F. Sale, A. J. Edwards, K. Caldeira, N. Knowlton, C. M. Eakin, R. Iglesias-Prieto,

N. Muthiga, R. H. Bradbury, A. Duby & M. E. Hatziolos. 2007. Coral reefs under rapid climate change and ocean acidification. Science. 318:1737-1742. DOI: 10.1126/science.1152509

Jackson, J. B. C. Jackson, J. B. C. & A. C. Coates. 1986. Life cycles and evolution of clonal (modular) animals. Philosophical Transactions of the Royal Society of London. 313:7-22.

LaJeunesse T. C., J. E. Parkinson, P. W. Gabrielson, H. J. Jeong, J. D. Reimer, C. R. Voolstra & S. R. Santos. 2018. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Current Biology. 28:2570-80. DOI: 10.1016/j.cub.2018.07.008

Lam, J., Y. W. Cheng, W. N. U. Chen, H. H. Li, C. S. Chen & S. E. Peng. 2017. A detailed observation of the ejection and retraction of defense tissue acontia in sea anemone (Exaiptasia pallida). PeerJ. 5: e2996. DOI: 10.7717/peerj.2996

Presnell, J. S., E. Wirsching & V. M. Weis. 2022. Tentacle patterning during Exaiptasia diaphana pedal lacerate development differs between symbiotic and aposymbiotic animals. PeerJ. 10: e12770. DOI: 10.7717/peerj.12770

Schlesinger, A., E. Kramarsky-Winter, H. Rosenfeld, R. Armoza-Zvoloni & Y. Loya. 2010. Sexual plasticity and self-fertilization in the sea anemone Aiptasia diaphana. PLoS ONE. 5(7): e11874. DOI: 10.1371/ journal.pone.0011874

Sunagawa S., E. C. Wilson, M. Thaler, M. L. Smith, C. Caruso, J. R. Pringle, V. M. Weis, M. Medina, & J. A. Schwarz. 2009. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics. 10: 258

Thornhill, D. J., Y. Xiang, D. T. Pettay, M. Zhong & S. R. Santos. 2013. Population genetic data of a model symbiotic cnidarian system reveal remarkable symbiotic specificity and vectored introductions across ocean basins. Molecular Ecology. 22:4499-4515. DOI: 10.1111/ mec.12416

van der Burg, C. A., A. Pavasovic, E. K. Giliding, E. S. Pelzer, J. M. Surm, H. L. Smith, T. P. Walsh & P. J. Prentis. 2020. The rapid regenerative response of a model sea anemone species Exaiptasia pallida is characterised by tissue plasticity and highly coordinated cell communication. Marine Biotechnology. 22:285-307. DOI: 10.1007/ s10126-020-09951-w

Voolstra, C. R. 2013. A journey into the wild of the cnidarian model system Aiptasia and its symbionts. Molecular Ecology. 22: 4366-4368. DOI: 10.1111/mec.12464

Weis, V. M., S. K. Davy, O. Hoegh-Guldberg, M. Rodriguez-Lanetty & J. R. Pringle. 2008. Cell biology in model systems as the key to understanding corals. Trends in Ecology & Evolution. 23:369-376. DOI: 10.1016/j.tree.2008.03.004

Yellowless, D., T. A. V. Rees & W. Leggat W. 2008. Metabolic interactions between algal symbionts and invertebrate hosts. Plant, Cell & Environment. 31:679-694. DOI: 10.1111/j.1365-3040.2008.01802.x

Downloads

Publicado

2023-05-30

Como Citar

Rivera-Ortega, J., & Thomé, P. E. (2023). Production of clone polyps of the model organism Exaiptasia diaphana (Rapp, 1829). HIDROBIOLÓGICA, 33(2). Recuperado de https://hidrobiologica.izt.uam.mx/hidrobiologica/index.php/revHidro/article/view/1735

Edição

Seção

Nota Científica