Production of clone polyps of the model organism Exaiptasia diaphana (Rapp, 1829)
Keywords:
Aiptasia, clonal polyps, model organism, pedal lacerationAbstract
Background. The sea anemone Exaiptasia diaphana (Order Actiniaria) is an ideal model organism to study diverse biological, physiological, and immune processes in corals (Order Scleractinia) due to its close phyletic relationship and shared traits. E. diaphana is widely distributed along the world’s tropical coastal areas. This species is easy to grow in aquariums under diverse experimental conditions since reproduces asexually and can be rendered aposymbiotic. However, there are a variety of methods to propagate them, making difficult comparisons of results. A standardized propagation protocol for E. diaphana can also contribute to improving the understanding of its biology. Goal. Determine the most rapid method of clonal production in controlled conditions. Results. In the micro-laceration treatment, 50% of the remnant tissue gave rise to a new clonal polyp, while all the amputated anemones resulted in two polyps with tentacles and a pedal disc. Amputated clonal polyps developed their tentacles from the third day, being this treatment the most rapid compared with the control group and the micro-laceration treatment. In both cases, the tentacles started to develop from the sixth day of the experiment. The control group naturally released five clonal polyps with tentacles in the ten-day experiment Conclusion. Transversal amputation was the most rapid method to obtain developed clonal polyps. We, therefore, propose transversal amputation as a standard method for the efficient artificial propagation of the clonal polyps of the model organism E. diaphana.
Downloads
References
Baumgarten, S., O. Simakov, L. Y. Escherick & C. R. Voolstra. 2015. The genome of Aiptasia, a sea anemone model for coral symbiosis. The Proceedings of the National Academy of Sciences. 112(38):11893- 11898. DOI: 10.1073/pnas.1513318112
Cary, L. R. 1911. A study of pedal laceration in actinians. The Biological Bulletin. 20(2): 81-106.
Cook, C. B., C. F. D’Elia & G. Muller-Parker. 1998. Host feeding and nutrient sufficiency for zooxanthellae in the sea anemone Aiptasia pallida. Marine Biology. 98:253-262. DOI: 10.1007/BF00391203
Costa-Leal, M., C. Nunes, S. Engrola, M. T. Dinis & R. Calado. 2012. Optimization of monoclonal production of the glass anemone Aiptasia pallida (Agassiz in Verrill, 1964). Aquaculture. 354-355:91-96. DOI: 10.1016/j.aquaculture.2012.03.035
Dungan, A. M., L. M. Hartman, G. Tortorelli, R. Belderok, A. M. Lamb, L. Pisan, G. I. McFadden, L. L. Blackall & J. van Oppen. 2020. Exaiptasia diaphana from the great barrier reef: a valuable resource for coral symbiosis research. Symbiosis. 80:195-206. DOI: 10.1007/ s13199-020-00665-0
Grawunder, D., E. A. Hambleton, M. Bucher, I. Wolfowicz, N. Bechtoldt & A. Guse. 2015. Induction of gametogenesis in the Cnidarian endosymbiosis model Aiptasia sp. Scientific Reports. 5, 15677. DOI: 10.1038/srep15677
Hambleton, E. A., A. Guse & J. R. Pringle. 2014. Similar specificities of symbiont uptake by adults and larvae in an anemone model system for coral biology. Journal of Experimental Biology. 217:1613-9. DOI: 10.1242/jeb.095679
Hoegh-Guldberg O, P.J. Mumby, A. J. Hooten, R. S. Steneck, P. Greenfield, E. Gomez, C. D. Harvell, P. F. Sale, A. J. Edwards, K. Caldeira, N. Knowlton, C. M. Eakin, R. Iglesias-Prieto,
N. Muthiga, R. H. Bradbury, A. Duby & M. E. Hatziolos. 2007. Coral reefs under rapid climate change and ocean acidification. Science. 318:1737-1742. DOI: 10.1126/science.1152509
Jackson, J. B. C. Jackson, J. B. C. & A. C. Coates. 1986. Life cycles and evolution of clonal (modular) animals. Philosophical Transactions of the Royal Society of London. 313:7-22.
LaJeunesse T. C., J. E. Parkinson, P. W. Gabrielson, H. J. Jeong, J. D. Reimer, C. R. Voolstra & S. R. Santos. 2018. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Current Biology. 28:2570-80. DOI: 10.1016/j.cub.2018.07.008
Lam, J., Y. W. Cheng, W. N. U. Chen, H. H. Li, C. S. Chen & S. E. Peng. 2017. A detailed observation of the ejection and retraction of defense tissue acontia in sea anemone (Exaiptasia pallida). PeerJ. 5: e2996. DOI: 10.7717/peerj.2996
Presnell, J. S., E. Wirsching & V. M. Weis. 2022. Tentacle patterning during Exaiptasia diaphana pedal lacerate development differs between symbiotic and aposymbiotic animals. PeerJ. 10: e12770. DOI: 10.7717/peerj.12770
Schlesinger, A., E. Kramarsky-Winter, H. Rosenfeld, R. Armoza-Zvoloni & Y. Loya. 2010. Sexual plasticity and self-fertilization in the sea anemone Aiptasia diaphana. PLoS ONE. 5(7): e11874. DOI: 10.1371/ journal.pone.0011874
Sunagawa S., E. C. Wilson, M. Thaler, M. L. Smith, C. Caruso, J. R. Pringle, V. M. Weis, M. Medina, & J. A. Schwarz. 2009. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics. 10: 258
Thornhill, D. J., Y. Xiang, D. T. Pettay, M. Zhong & S. R. Santos. 2013. Population genetic data of a model symbiotic cnidarian system reveal remarkable symbiotic specificity and vectored introductions across ocean basins. Molecular Ecology. 22:4499-4515. DOI: 10.1111/ mec.12416
van der Burg, C. A., A. Pavasovic, E. K. Giliding, E. S. Pelzer, J. M. Surm, H. L. Smith, T. P. Walsh & P. J. Prentis. 2020. The rapid regenerative response of a model sea anemone species Exaiptasia pallida is characterised by tissue plasticity and highly coordinated cell communication. Marine Biotechnology. 22:285-307. DOI: 10.1007/ s10126-020-09951-w
Voolstra, C. R. 2013. A journey into the wild of the cnidarian model system Aiptasia and its symbionts. Molecular Ecology. 22: 4366-4368. DOI: 10.1111/mec.12464
Weis, V. M., S. K. Davy, O. Hoegh-Guldberg, M. Rodriguez-Lanetty & J. R. Pringle. 2008. Cell biology in model systems as the key to understanding corals. Trends in Ecology & Evolution. 23:369-376. DOI: 10.1016/j.tree.2008.03.004
Yellowless, D., T. A. V. Rees & W. Leggat W. 2008. Metabolic interactions between algal symbionts and invertebrate hosts. Plant, Cell & Environment. 31:679-694. DOI: 10.1111/j.1365-3040.2008.01802.x
Downloads
Published
How to Cite
Issue
Section
License
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, HIDROBIOLÓGICA reconoce y respeta el derecho moral de los autores, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Publicar en la revista HIDROBIOLÓGICA tiene un costo de recuperación de $500 pesos mexicanos por página en blanco y negro (aproximadamente 29 dólares americanos) y $1000 pesos por página a color (aproximadamente 58 dólares americanos).
Todos los textos publicados por HIDROBIOLÓGICA sin excepción se distribuyen amparados bajo la licencia Creative Commons 4.0Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en HIDROBIOLÓGICA (por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en HIDROBIOLÓGICA.
Para todo lo anterior, el o los autor(es) deben remitir el formato de Carta-Cesión de la Propiedad de los Derechos de la primera publicación debidamente requisitado y firmado por el autor(es). Este formato se puede enviar por correo electrónico en archivo pdf al correo: enlacerebvistahidrobiológica@gmail.com; rehb@xanum.uam.mx (Carta-Cesión de Propiedad de Derechos de Autor).
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.