Effect of fucoidan and alginate on germination and growth of mung bean seedling

Fucoidan and alginate on mung bean growth

Autores

  • Dania Andrea Di Filippo-Herrera Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional s/n. Col. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23096. México
  • Dora Luz Arvizu-Higuera Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional s/n. Col. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23096. México
  • Yoloxochitl Elizabeth Rodríguez-Montesinos Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas (IPN-CICIMAR). Ave. Instituto Politécnico Nacional s/n, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23096. Mexico 5 Consejo Nacional de Ciencia y Tecnol
  • Mauricio Muñoz-Ochoa Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional s/n. Col. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23096. México
  • Rosalba Mireya Hernández-Herrera Laboratorio de Biotecnología, Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Calle Ramón Padilla Sánchez 2100, Col. Nextipac, Zapopan, Jalisco, 45110. México
  • Gustavo Hermandez Carmona IPN Ciencias Agrícolas, Biología y Química

Palavras-chave:

Eisenia arborea, polysaccharides, root length, Sargassum horridum, shoot length

Resumo

Background. The interest in studying seaweed polysaccharides as plant growth biostimulants is recent and has generally focused on seaweed liquid extracts for compounds content that have positive effect on plant development. Within these compounds are the carbohydrates such as alginate and fucoidan, among others. Goals. To evaluate the effect of crude fucoidan and alginate on seed germination and their growth-stimulating activity on seedling of mung bean (Vigna radiata). Methods. Fucoidan and alginate from Eisenia arborea and Sargassum horridum at six different doses (0.6, 1.2, 2.5, 5, 10, and 20 mg m‒1 ) were evaluated on seed germination and seedling growth of mung bean. Results. Alginate from both algae species in this study did not show a significant effect on mung bean growth. Fucoidan from S. horridum produced the significant effect on mung bean growth by increasing root length (16.2%) and seedling total length (11.9%) at a concentration of 0.6 mg mL‒1 and an increase in the dry weight of the seedling (31%) at a concentration of 20 mg mL‒1 . While fucoidan from E. arborea had the higher effect on shoot growth (10.5%) and total length (10.7%), compared to the control when applied at a concentration of 10 mg mL‒1 . Conclusions. Overall, this study showed that fucoidan from both S. horridum and E. arborea can stimulate seedling growth and increase the germination percentage of mung bean seeds compared to the control.

Downloads

Não há dados estatísticos.

Biografia do Autor

Gustavo Hermandez Carmona, IPN Ciencias Agrícolas, Biología y Química

Departamento de Desarrollo de Tecnologías

Profesor-Investigador

Referências

Ali, O., A. Ramsubhag & J. Jayaraman. 2019. Biostimulatory activities of Ascophyllum nodosum extract in tomato and sweet pepper crops in a tropical environmental. PLoS ONE 14(5): e0216710. DOI: 10.1371/journal.pone.0216710
AOSA (Association of Official Seed Analysts). 2005. In: Rules for testing seed. (Capashew Ed), 4-10, 4-11. Las Cruces, NM.
Battacharyya, D., M. Z. Babgohari, P. Rathor & B. Prithiviraj. 2015. Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae 196: 39-48. DOI: 10.1016/j.scienta.2015.09.012
Bouissil, S., Z. E. Alaoui-Talibi, G. Pierre, H. Rchid, P. Michaud, C. Delattre & C. El Modafar. 2020. Fucoidans of Moroccan brown seaweed as elicitors of natural defenses in date palm roots. Marine Drugs 18(12): 596. DOI: 10.3390/md18120596
Camacho, O. & G. Hernández-Carmona. 2012. Phenology and alginates of two Sargassum species from the Caribbean coast of Colombia. Ciencias Marinas 38(2): 381-393. DOI: 10.7773/cm.v38i2.1963
Castellanos-Barriga, L. G., F. Santacruz-Ruvalcaba, G. Hernández-Carmona, E. Ramírez-Briones & R. M. Hernández-Herrera. 2017. Effect of seaweed extracts from Ulva lactuca on seedling growth of mung bean (Vigna radiata). Journal of Applied Phycology 29: 2479-2488. DOI: 10.1007/s10811-017-1082-x
Chandía, N. P., B. Matsuhiro, E. Mejías & A. Moenne. 2004. Alginic acids in Lessonia vadosa: Partial hydrolysis and elicitor properties of the polymannuronic acid fraction. Journal of Applied Phycology 16(2): 127-133. DOI: 10.1023/B:JAPH.0000044778.44193.a8
Di Filippo-Herrera, D., M. Muñoz-Ochoa, R. M. Hernández-Herrera & G. Hernández-Carmona. 2019. Biostimulant activity of individual and blended seaweed extracts on the germination and growth of the mung bean. Journal of Applied Phycology 31(3): 2025-2037. DOI: 10.1007/s10811-018-1680-2
Drobek, M., M. Frąc & J. Cybulska. 2019. Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress–A review. Agronomy 9(6), 335. DOI: 10.3390/agronomy9060335
EL Boukhari, M. E. M., M. Barakate, Y. Bouhia & K. Lyamlouli. 2020. Trends in seaweed extract based biostimulants: manufacturing process and beneficial effect on soil-plant systems. Plants 9(3): 359. DOI: 10.3390/plants9030359
Ertani, A., O. Francioso, A. Tinti, M. Shiavon, D. Pizzeghello & S. Nardi. 2018. Evaluation of seaweed extracts from Laminaria and Ascophyllum nodosum spp. as biostimulants in Zea mays L. using a combination of chemical, biochemical and morphological approaches. Frontiers in Plant Science 9: 428. DOI: 10.3389/fpls.2018.00428
Falcón, A. B. & J. C. Cabrera. 2007. Actividad enraizadora de una mezcla de oligogaracturónidos en pecíolos de violeta africana (Saintpaulia ionantha). Cultivos Tropicales 28(2): 87-90.
Fitton, H. J., D. S. Stringer, A. Y. Park & S. N. Karpiniec. 2019. Review. Therapies from fucoidan: new developments. Marine Drugs 17(10): 571. DOI: 10.3390/md17100571
González, A., J. Castro, J. Vera & A. Moenne. 2013. Seaweed oligosaccharides stimulate plant growth by enhancing carbon and nitrogen assimilation, basal metabolism, and cell division. Journal of Plant Growth Regulation 32: 443-448. DOI: 10.1007/s00344-012-9309-1
Hasanuzzaman, M. & V. Fotopoulos (eds). 2019. Priming and Pretreatment of Seeds and Seedlings: Implication in Plant Stress Tolerance and Enhancing Productivity in Crop Plants. Springer, Singapore. 604 p.
Hernández-Herrera, R. M., F. Santacruz-Ruvalcaba, J. Zañudo-Hernández & G. Hernández-Carmona. 2016. Activity of seaweed extracts and polysaccharide-enriched extracts form Ulva lactuca and Padina gymnospora as growth promoters of tomato and mung bean plants. Journal of Applied Phycology 28(4): 2549-2560. DOI: 10.1007/s10811-015-0781-4
Hien, N. Q., N. Nagasawa, L. X. Tham, F. Yoshii, V. H. Dang, H. Mitomo, K. Makuuchi & T. Kume. 2000. Growth promotion of plants with depolymerized alginates by irradiation. Radiation Physics and Chemistry 59(1): 97–101. DOI: 10.1016/S0969-806X(99)00522-8
Hong, D.D., H.M. Hien & P.N. Son. 2007. Seaweeds from Vietnam used for functional food, medicine and biofertilizer. Journal of Applied Phycology 19(6): 817-826. DOI: 10.1007/s10811-007-9213-4
Idrees, M., M. Naeem, M. Alam, T. Aftab, N. Hashmi, M. M. A. Khan, Moinuddin & L. Varshney. 2011. Utilizing the -irradiated sodium alginate as a plant growth promoter for enhancing the growth, physiological activities, and alkaloids production in Catharanthus roseus L. Agricultural Sciences in China 10(8): 1213-1221. DOI: 10.1016/S1671-2927(11)60112-0
Iwasaki, K. & Y. Matsubara. 2000. Purification of alginate oligosaccharides with root growth-promoting activity toward lettuce. 2000. Bioscience, Biotechnology, and Biochemestry 64(5): 1067-1070. DOI: 10.1271/bbb.64.1067
Khan, W., U. P. Rayirath, S. Subramanian, M. N. Jithesh, P. Rayorath, D. M. Hodges, A. T. Critchley, J. S. Craigie, J. Norrie & B. Prithiviraj. 2009. Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation 28(4): 386-399. DOI: 10.1007/s00344-009-9103-x
Klarzynski, O., V. Descamps, B. Plesse, J. C. Yvin, M. Kopp, B. Kloareg & B. Fritig. 2003. Sulfated fucan oligosaccharides elicit defense responses in tobacco and local and systemic resistance against tobacco mosaic virus. Molecular Plant-Microbe Interactions 16(2): 115-122. DOI: 10.1094/MPMI.2003.16.2.115
Laporte, D., J. Vera, N. P. Chandía, E. A. Zúñiga, B. Matsuhiro & A. Moenne. 2007. Structurally unrelated algal oligosaccharides differentially stimulate growth and defense against tobacco mosaic virus in tobacco plants. Journal of Applied Phycology 19(1): 79-88. DOI: 10.1007/s10811-006-9114-y
Lapshina, L. A., A. V. Reunov, V. P. Nagorskaya, T. N. Zvyagintseva & N. M. Shevchenko. 2006. Inhibitory effect of fucoidan from brown alga Fucus evanescens on the spread of infection induced by tobacco mosaic virus in tobacco leaves of two cultivars. Russian Journal of Plant Physiology 53(2): 246-251. DOI: 10.1134/S1021443706020154
Koh, H. S. A., J. Lu & W. Zhou. 2019. Structure characterization and antioxidant activity of fucoidan isolated from Undaria pinnatifida grown in New Zealand. Carbohydrate Polymers 212: 178-185. DOI: 10.1016/j.carbpol.2019.02.040
Lim, S. J., W. M. W. Aida, M. Y. Maskat, S. Mamot, J. Ropien & D. M. Mohd. 2014. Isolation and antioxidant capacity of fucoidan from selected Malaysian seaweeds. Food Hydrocolloids 42(Part 2): 280-288. DOI: 10.1016/j.foodhyd.2014.03.007
Lijour, Y., E. Gentric, E. Deslandes & J. Guezennec. 1994. Estimation of the sulfate content of hydrothermal vent bacterial polysaccharides by Fourier transform infrared spectroscopy. Analytical Biochemistry 220(2): 244-248. DOI: 10.1006/abio.1994.1334Get rights and content
Mukherjee, A. & J. S. Patel. 2020. Seaweed extract: biostimulator of plant defense and plant productivity. International Journal of Environmental Science and Technology 17(1): 553-558. DOI: 10.1007/s13762-019-02442-z
Muñoz-Ochoa. M., J. I. Murillo-Álvarez, Y. E. Rodríguez-Montesinos, G. Hernández-Carmona, D. L. Arvizu-Higuera, J. Peralta-Cruz & J. Lizardi-Mendoza. 2009. Anticoagulant screening of marine algae from México, and partial characterization of the active sulphated polysaccharide from Eisenia arborea. CICIMAR Oceánides 24(1): 41-51. DOI: 10.37543/oceanides.v24i1.52
Mzibra, A., A. Aasfar, H. El Arroussi, M. Khouloud, D. Dhiba, I. Meftah Kadmiri & A. Bamouh. 2018. Polysaccharides extracted from Moroccan seaweed: a promising source of tomato plant growth promoters. Journal of Applied Phycology 30(5): 2953-2962. DOI: 10.1007/s10811-018-1421-6
Rachidi, F., R. Benhima, L. Sbabou & H. El Arroussi. 2020. Microalgae polysaccharides bio-stimulating effect on tomato plants: Growth and metabolic distribution. Biotechnology Reports 25: e00426. DOI: 10.1016/j.btre.2020.e00426
Rengasamy, K. R. R., M. G. Kulkarni, W.A. Stirk & J. Van Staden. 2015. Eckol - a new plant growth stimulant from the brown seaweed Ecklonia maxima. Journal of Applied Phycology 27(1): 581-587. DOI: 10.1007/s10811-014-0337-z
Rodríguez-Montesinos, Y. E., D. L. Arvizu-Higuera & G. Hernández-Carmona. 2008. Seasonal variation on size and chemical constituents of Sargassum sinicola Setchell et Gardner from Bahía de La Paz, Baja California Sur, Mexico. Phycological Research 56(1): 33-38. DOI: 10.1111/j.1440-1835.2008.00482.x
Rolland, F., B. Moore & J. Sheen. 2002. Sugar sensing and signaling in plants. Plant Cell 14(Supp. 1): 185-205. DOI: 10.1105/tpc.010455
Salachna, P., M. Grzeszczuk, E. Meller & M. Soból. 2018. Oligo-alginate with low molecular mass improves growth and physiological activity of Eucomis autumnalis under salinity stress. Molecules 23(4): 812. DOI: 10.3390/molecules23040812
Sarfaraz, A., M. Naeem, S. Nasir, M. Idrees, T. Aftab, N. Hashmi, M. M. A. Khan, Moinuddin & L. Varshney. 2011. An evaluation of the effects of irradiated sodium alginate on the growth, physiological activities and essential oil production of fennel (Foeniculum vulgare Mill.). Journal of Medicinal Plants Research 5(1): 15-21. DOI: 10.5897/JMPR.9000071
Sharma, S. H. S, G. Lyons, C. McRoberts, D. McCall, E. Carmichael, F. Andrews, R. Swan, R. McCormack & R. Mellon. 2012. Bio-stimulant activity of brown seaweeds species from Strangford Lough: compositional analyses of polysaccharides and bioassay of extracts using mung bean (Vigno mungo L.) and pak choi (Brassica rapa chinensis L.). Journal of Applied Phycology 24(5): 1081-1091. DOI: 10.1007/s10811-011-9737-5
Van Oosten, M. J., O. Pepe, S. De Pascale, S. Silletti & A. Maggio. 2017. The role of biostimulants and bioeffector as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture 4:5. DOI: 10.1186/s40538-017-0089-5
Yabur, R., Y. Bashan & G. Hernández-Carmona. 2007. Alginate from the macroalgae Sargassum sinicola as a novel source for microbial immobilization material in wastewater treatment and plant growth promotion. Journal of Applied Phycology 19(1): 43-53. DOI: 10.1007/s10811-006-9109-8
Zamani, S., S. Khorasaninejad & B. Kashefi. 2013. The importance role of seaweeds of some characters of plant. International Journal of Agriculture and Crop Sciences 5(16): 1789-1793.
Zhao, Y., Y. Zheng, J. Wang, S. Ma, Y. Yu, W. L. White, S. Yang, F. Yang & J. Lu. 2018. Fucoidan extracted from Undaria pinnatifida: Source for nutraceuticals/functional foods. Marine Drugs 16(9): 321. DOI: 10.3390/md16090321
Zou, P., X. Yang, Y. Yuan, C. Jing, J. Cao, Y. Wang, Y. L. Zhang, C. Zhang & Y. Li. 2021. Purification and characterization of a fucoidan from the brown algae Macrocystis pyrifera and the activity of enhancing salt-stress tolerance of wheat seedlings. International Journal of Biological Macromolecules, 180: 547–558. DOI: 10.1016/j.ijbiomac.2021.03.039

Publicado

2022-12-13

Como Citar

Di Filippo-Herrera, D. A., Arvizu-Higuera, D. L., Rodríguez-Montesinos, Y. E., Muñoz-Ochoa, M., Hernández-Herrera, R. M., & Hermandez Carmona, G. (2022). Effect of fucoidan and alginate on germination and growth of mung bean seedling: Fucoidan and alginate on mung bean growth. HIDROBIOLÓGICA, 32(3). Recuperado de https://hidrobiologica.izt.uam.mx/hidrobiologica/index.php/revHidro/article/view/1646

Edição

Seção

Artículos

Artigos mais lidos pelo mesmo(s) autor(es)