Effect of symbiotic administration on growth and intestinal microbiota variation of pacú (Piaractus mesopotamicus) in recirculating aquaculture systems

Authors

  • Patricia Martínez Español
  • Ana L. Ibáñez UAM-Iztapalapa
  • Oscar Monroy H. UAM-Iztapalapa
  • José Félix Aguirre G. UAM-Lerma
  • Eduardo Maya P. UAM-Xochimilco
  • Hugo Ramírez-Saad UAM-Xochimilco

Keywords:

growth, intestinal content, Piaractus mesopotamicus, symbiotics, RAS

Abstract

Background. The application of symbiotics in aquaculture holds potential as a growth promoter and substitute for antibiotics, while also improving water quality and nutrient digestibility. Goals. This study aimed to assess the impact of symbiotics on the growth and bacterial populations dynamics of the intestinal contents of pacú (Piaractus mesopotamicus) cultured in recirculating aquaculture systems (RAS). Methods. 87-day cultures of P. mesopotamicus were conducted in RAS under three conditions: 1) food-mixed with symbiotic, 2) activated symbiotic directly added to the water and 3) control treatment (without symbiotic). The evaluation included growth parameters, water quality, and bacterial populations in both the water and intestinal content. Results. Under these conditions pacú showed isometric growth, and no significant differences were found between treatments for food conversion ratio and Fulton condition factor. Regarding the performance of the recirculating system, there were no differences in pH, dissolved oxygen and ammonia removal by the biofilter. However, pacú exhibited high ammonia tolerance (0.62 mg/L) in the 87-day cultures when the symbiotic was mixed with the food. Additionally, final weights and specific growth rate were significantly higher (5.4 g and 0.0321 days-1, respectively) compared to the other conditions. Based on 16S rRNA gene sequence analysis, seven bacterial populations were identified in the intestinal content of pacú and in the culture water: Microbacterium, Variovorax, Prosthecobacter, Bacillus, Asaccharospora, Turicibacter sanguinis, and Limnohabitans planktonicus. Conclusions: symbiotics mixed with food, significantly promoted the growth of P. mesopotamicus and enhanced ammonia tolerance in RAS. These results set a benchmark in the study of the length-weight relationship of P. mesopotamicus, the biofilter´s capability to remove ammonia, and the relationship between symbiotics and bacterial dynamics in the water and intestinal content during pacú crops in RAS.

Downloads

Download data is not yet available.

Author Biography

Patricia Martínez, Español

Profesor-Investigador.

Laboratorio de Biotecnología.

Departamento de Sistemas Biológicos, CBS

References

Abimorad, E. G., G. C. Favero, G. H. Squassoni & D. Carneiro. 2010. Dietary digestible lysine requirement and essential amino acid to lysine ratio for pacu Piaractus mesopotamicus. Aquaculture Nutrition 16: 370-377. DOI: 10.1111/j.1365-2095.2009.00674.x

Abreu de, J. S., F. R. Esteves & E. C. Urbinati. 2012. Stress in pacu exposed to ammonia in water. Revista Brasileira De Zootecnia-Brazilian Journal of Animal Science 41: 1555-1560.

Aguirre-Garrido, J. F., H. C. Ramírez-Saad, N. Toro & F. Martínez-Abarca. 2016. Bacterial Diversity in the Soda Saline Crater Lake from Isabel Island, Mexico. Microbial Ecology 71: 68-77. DOI: 10.1007/s00248-015-0676-6

Aissaoui, S., H. Ouled-Haddar, M. Sifour, K. Harrouche & H. Sghaier. 2017. Metabolic and Co-Metabolic Transformation of Diclofenac by Enterobacter hormaechei D15 Isolated from Activated Sludge. Current Microbiology 74: 381-388. DOI: 10.15171/ijb.1530

Aslam, S. N., S. Navada, G. R. Bye, V. C. Mota, B.F. Terjesen & Ø. Mikkelsen. 2019. Effect of CO2 on elemental concentrations in recirculating aquaculture system tanks. Aquaculture 511: 734254. DOI: 10.1016/j.aquaculture.2019.734254

Bacchetta, C., A. S. Rossi, R. E. Cian, R. E., Drago, S. R. & Cazenave, J. 2019. Dietary beta-carotene improves growth performance and antioxidant status of juvenile Piaractus mesopotamicus. Aquaculture Nutrition 25: 761-769. DOI: 10.1111/anu.12893

Badiola, M., O. C. Basurko, R. Piedrahita, P. Hundley & D. Mendiola. 2018. Energy use in Recirculating Aquaculture Systems (RAS): A review. Aquacultural Engineering 81: 57-70. DOI: 10.1016/j.aquaeng.2018.03.003

Barbieri, E. & A. C. V. Bondioli. 2015. Acute toxicity of ammonia in Pacu fish (Piaractus mesopotamicus, Holmberg, 1887) at different temperatures levels. Aquaculture Research 46: 565-571. DOI: 10.1111/are.12203

Barrero, M., A. Paredes, O. Romero & G. A. Poleo. 2012. Proximate composition and flsh quality of red bellied pacu, Piaractus brachypomus, cultured in two different closed systems. Zootecnia Tropical 30 (3): 263-268.

Barriga, J. P., M. A. Battini, P. J. Macchi, D. Milano & V. E. Cussac. 2002. Spatial and temporal distribution of landlocked Galaxias maculatus and Galaxias platei (Pisces:Galaxiidae) in a lake in the South American Andes. New Zealand Journal of Marine and Freshwater Research 36: 345-359. DOI: 10.1080/00288330.2002.9517092

Bicudo, A. J. A., R. Y. Sado & J. E. P. Cyrino. 2010. Growth performance and body composition of pacu Piaractus mesopotamicus (Holmberg 1887) in response to dietary protein and energy levels. Aquaculture Nutrition 16: 213-222. DOI: 10.1111/j.1365-2095.2009.00653.x

Castañeda-Monsalve, V. A., E. Junca, E. García-Bonilla, O. I Montoya-Campuzano & C. X. Moreno-Herrera. 2019. Characterization of the gastrointestinal bacterial microbiome of farmed juvenile and adult white Cachama (Piaractus brachypomus). Aquaculture 512: 734325. DOI: 10.1016/j.aquaculture.2019.734325

de Paula, T. G., F. L. A. de Almeida, F. R. Carani, I. J. Vechetti, C. R. Padovani, R. A. S. Salomao, E. A. Mareco, V. B. Dos Santos & M. Dal-Pai-Silva. 2014. Rearing temperature induces changes in muscle growth and gene expression in juvenile pacu (Piaractus mesopotamicus). Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology 169: 31-37. DOI: 10.1016/j.cbpb.2013.12.004

Douglas, G. M., V.J. Maffei, J.R. Zaneveld, S.N. Yurgel et al. 2020. PICRUSt2 for prediction of metagenome functions. Nature Biotechnology 38: 685–688. https://doi.org/10.1038/s41587-020-0548-6

dos Santos, J. A., C.M. Soares & A. Bialetxki. 2020. Effects of pH on the incubation and early development of fish species with different reproductive strategies. Aquatic Toxicology 219: 105382. DOI: 10.1016/j.aquatox.2019.105382

FAO (Food and Agriculture Organization). 2020. The State of World Fisheries and Aquaculture. Sustainability in action. United Nations. Rome. 21-138 p. Also available at: htts://www.fao.org/3/ca9229en/CA9229EN.pdf

Felske, A., B. Engelen, U. Nubel & H. Backhaus. 1996. Direct ribosome isolation from soil to extract bacterial rRNA for community analysis. Applied and Environmental Microbiology 62: 4162-4167.

Gomez-Penaranda, J., L. Vasquez-Gamboa & D. Valencia. 2016. The effect of different feeding and starvation frequencies on growth utilization and nutrients, for Piaractus brachypomus (Cuvier, 1818). Latin American Journal of Aquatic Research 44: 569-575. DOI: 10.3856/vol44-issue3-fulltext-15

Guidoli, M. G., J. A. Mendoza, S. L. Falcón,S. I. Boehringer, S. Sánchez & M. E. F. N. Macías. 2018. Autochthonous probiotic mixture improves biometrical parameters of larvae of Piaractus mesopotamicus (Caracidae, Characiforme, Teleostei). Ciencia Rural 48 (7): e20170764. DOI: 10.1590/0103-8478cr20170764

Hickling, C. F. 1966. Socio-Economic Aspects Of Fish Farming. Proceedings of the Nutrition Society 25: 140-146. DOI: 10.1079/pns19660030

Hoseinifar, S.H., E. Ringo, A.S. Masouleh & M.Á. Esteban. 2016. Probiotic, prebiotic and synbioic supplements in sturgeon aquaculture: a review. 8 (1): 89-102. DOI: 10.1111/RAQ.12082

Ibáñez, A. L. 2015. Geographic differences and annual stability in length-weight relationships of fish mullets (Pisces: Mugilidae). Hidrobiológica 25: 146-150.

Inoue, L., A. Hackbarth, G. Arberlaez-Rojas & G. Moraes. 2019. Growth performance and metabolism of the Neotropical fish Piaractus mesopotamicus under sustained swimming. Aquaculture 511 (4): 734219. DOI: 10.1016/j.aquaculture.2019.734219

ITIS (Integrated Taxonomic Information System). 2021. Piaractus.Available on line at: https://www.itis.gov/advanced_search.html (downloaded May 23, 2021).

Jomori, R. K., D. J. Carneiro, E. B. Malheiros & M. C. Portella. 2003. Growth and survival of pacu Piaractus mesopotamicus (Holmberg, 1887) juveniles reared in ponds or at different initial larviculture periods indoors. Aquaculture 221: 277-287. DOI: 10.1016/s0044-8486(03)00069-3

Jomori, R. K., R. K. Luz & M. C. Portella. 2012. Effect of Salinity on Larval Rearing of Pacu, Piaractus mesopotamicus, a Freshwater Species. Journal of the World Aquaculture Society 43: 423-432. DOI: 10.1111/j.1749-7345.2012.00570.x

Khanipour, A. A., A. Noori, M. Amini & E. Kamrani. 2020. Length-weight relationship and Fulton's condition factor of Macrobrachium nipponense (De Haan, 1849) in Anzali lagoon of Iran. Iranian Journal of Fisheries Sciences 19: 496-500. DOI: 10.22092/ijfs.2019.118323

Klein, S., E. K. Lorenz, G.W. Bueno, A. Signor, A. Feiden & W. R. Boscolo. 2014. Levels of crude protein in diets for Pacu (Piaractus mesopotamicus) from 150 to 400 g reared in cages. Archivos de zootecnia 63: 599-611.

Kumar, A., P. K. Pradhan, P. C. Das, S. M. Srivastava, K. K. Lal & J. K. Jena. 2018. Growth performance and compatibility of pacu, Piaractus brachypomus with Indian major carps in polyculture system. Aquaculture 490: 236-239. DOI: 10.1016/j.aquaculture.2018.02.052

Lee, J.M., W.J. Jang, M.T. Hasan, B.-J. Lee, K.W. Kim, S.G. Lim, H.S. Han & I.-S- Kong. 2019 Characterization of a Bacillus sp. isolated from fermented food and its symbiotic effect with barley β-glucan as a biocontrol agent in the aquaculture industry. Applied Microbiology and Biotechnology 103: 1429–1439. DOI: 10.1007/s00253-018-9480-9

Leyton, F. S. A., E. Muñoz, S. M. Gordillo, G. G. C. Sánchez, L. A. Muñoz & D. A. Soto. 2015. Estimación del factor de condición de Fultron (K) y la relación longitud-peso en tres especies ícticas presentes en un sector sometido a factores de estrés ambiental en la cuenca alta del río Cauca. Revista de la Asociación Colombiana de Ciencias 27: 21-28.

Lugert, V., Thaller, G., Tetens, J., Schulz, C. & Krieter, J. 2016. A review on fish growth calculation: multiple functions in fish production and their specific application. Reviews in Aquaculture 8 30-42. DOI: 10.1111/raq.12071

Machado-Neto, R., D. B. Moretti, W. M. Nordi, T. M. P. Da Cruz, & J. E. P. Cyrino. 2016. Growth performance of juvenile pacu (Piaractus mesopotamicus) and dourado (Salminus brasiliensis) fed with lyophilized bovine colostrum. Aquaculture Research 47: 3551-3557. DOI: 10.1111/are.12805

Martínez Cruz, P., A. L. Ibáñez, O. A. Monroy Hermosillo & H. Ramírez-Saad. 2012. Use of Probiotics in Aquaculture. International Scholarly Research Network ISRN Microbiology 2012: 13. DOI: 10.5402/2012/916845

Medeiros, R. S., B. A. Lopez, L. A. Sampaio, L. A. Romano & R. V. Rodrigues. 2016. Ammonia and nitrite toxicity to false clownfish Amphiprion ocellaris. Aquaculture International 24: 985-993. DOI: 10.1007/s10499-015-9965-9

Mendoza, L. F. D., J. G. Q. Mujica, J. M. R. Cunayque, G. W. A. Lucana, J. J. I. Angulo, V. I. S. De La Cruz, V. A. C. Escobar & E. M. MatonnieR. 2019. Assessment of Heterotrophic Nitrification Capacity in Bacillus spp. and its Potential Application in the Removal of Nitrogen from Aquaculture Water. Journal of Pure and Applied Microbiology 13: 1893-1908. DOI: 10.22207/jpam.13.4.02

Merrifield, D., A. Dimitroglou, A. Foey, S.J. Davies, R.T.M, Baker, J. Bogwald, M. Castex & E. Ringo. 2010. The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 302 (1-2): 1-18. DOI: 10.1016/j.aquaculture.2010.02.007

Montgomery, D. C. 2004. Diseño y Análisis de Experimentos, USA, 2ª ed. Editorial Limusa S.A. de C.V. México. 60-125 p.

Mourad, N. M. N., A. C. Costa, R. T. F. Freitas, M. A. Serafini, R. V. R.M. Neto & V. O. Felizardo. 2018. Weight and morphometric growth of Pacu (Piaractus mesopotamicus), Tambaqui (Colossoma macropumum) and their hybrids from spring to winter. Pesquisa Veterinaria Brasileira 38: 544-550. DOI: 10.1590/1678-5150-pvb-4808

Mugwanya, M., M.A.O. Dawood, F. Kimera & H. Sewllam. 2022. Updating the Role of Probiotics, Prebiotics, and Symbiotics for Tilapia Aquacultures as Leading Candidates for Food Sustainability: A Review. Probiotics and Antimicrobial Proteins 14: 130-157. DOI: 10.1007/s12602-021-09852-x

Nash, R. D. M., A. H. Valencia & A. J. Geffen. 2006. The Origin of Fulton's Factor-Setting the Record Straight. Fisheries 31 (5): 236-238.

Nitz, L. F., L. C. Maltez, L. Pellegrin, L. D. Garcia, L. A. L. Barbas & C. Prentice-Hernandez. 2019. Flesh Quality And Stress Responses Of Piaractus mesopotamicus After Exposure To Sublethal Levels Of Ammonia And Subsequent Recovery. Boletim Do Instituto De Pesca 45 (1): e.325. DOI: 10.20950/1678-2305.2019.45.1.325

Orla-Jensen, S. 1943. The Lactic Acid Bacteria. Kobenhavn, 2nd ed. Assorted folio.

Pavon, Y., R. E. Cian, M. A. C. Soldini, D. R. Hernandez, S. Sanchez & S. R. Drago. 2018. Sensory and instrumental textural changes in fillets from Pacu (Piaractus mesopotamicus) fed different diets. Journal of Texture Studies, 49, 646-652.

Piedrahita, R. H. 2003. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture 226: 35-44. DOI: 10.1016/s0044-8486(03)00465-4

Poleo, G., J. V. Aranbarrio, L. Mendoza & O. Romero. 2011. High-density rearing of red-bellied pacu in two closed systems. Pesquisa Agropecuaria Brasileira 46: 429-437.

Quaresma, F. D., F. L. B. Dos Santos, P. F. Ribeiro, L. A. Leite, & Sampaio, A. H. 2020. Acute toxicity of non-ionized ammonia on tambacu (Colossoma macropomum x Piaractus mesopotamicus). Revista Ciencia Agronomica 51: 6. DOI: 10.5935/1806-6690.20200046

Ramírez-Saad H. W.L. Akkermans &. A.D.L. Akkermans. 2004. DNA Extraction from Actinorhizal Nodules. In: Kowalchuk, F., I. A. de Bruijn, L. Head, A. D. Akkermans, J. D. van Elsas (Eds). Molecular Microbial Ecology. Manual II. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Rennie, M. D. & R. Verdon. 2008. Development and evaluation of condition indices for the lake whitefish. North American Journal of Fisheries Management 28: 1270-1293. DOI: 10.1577/m06-258.1

Ringo E., R.E. Olsen, T.Q. Gifstad, R.A. Dalmo, H. Amlund, G.-I. Hemre & A.M. Bakke. 2010. Prebiotics in aquaculture: a review. Aquaculture Nutrition.16 (2): 117-136. DOI: 10.1111/j.1365-2095.2009.00731.x

Rise, M. L., C. J. Martyniuk & M. Y. Chen. 2019. Comparative physiology and aquaculture: Toward Omics-enabled improvement of aquatic animal health and sustainable production. Comparative Biochemistry and Physiology D-Genomics & Proteomics 31: 9. DOI: 10.1016/j.cbd.2019.100603

Rojas, P., J. E. Rosales, C. Espinoza & C. Ching, 2014. Protein Eficiency of feed in the Farming of Litopenaeus vannamei. Boletín Nicovita. Ecuardor. 1-4 p.

Rossi, L. T., A. R. Sharpen, J. A. Zimmermann, C. R. Olivero, M. V. Zbrun, L. S. Frizzo, M. L. Signorini, C. Bacchetta, R. E. Cian, J. Cazenave, L. P. Soto & S. R. Drago. 2020. Intestinal microbiota modulation in juvenile Pacú (Piaractus mesopotamicus) by supplementation with Pyropia columbina and beta-carotene. Aquaculture International 28: 1001-1016. DOI: 10.1007/s10499-020-00508-1

Ruiz, V. H. & M. Marchant. 2006. Ictiofauna de aguas continentales Chilenas. Neotropical Ichthyology 4 (4): 463.

Sanguinetti, C. J., E. D. Neto & A. J. G. Simpson. 1994. Rapid Silver Staining And Recovery Of PCR Products Separated On Polyacrylamide Gels. Biotechniques 17: 914-916.

Soltani, M., K. Ghosh, S. H. Hoseinifar, V. Kumar, A. J. Lymbery, S. Roye & E. Ringo. 2019. Genus Bacillus, promising probiotics in aquaculture: Aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Reviews in Fisheries Science & Aquaculture 27: 331-379. DOI: 10.1080/23308249.2019.1597010

Soncini, R & M. L. Glass. 1997. The effects of temperature and hyperoxia on arterial PO2 and acid-base status in Piaractus mesopotamicus. Journal of Fish Biology 51(2): 225-233.

Thurlow, C. M., M. A. Williams, A. Carrias, C. Ran, M. Newman, J. Tweedie, E. Allison, L. N. Jescovitch, A. E. Wilson, J. S. Terhune & M. R. Liles. 2019. Bacillus velezensis AP193 exerts probiotic effects in channel catfish (Ictalurus punctatus) and reduces aquaculture pond eutrophication. Aquaculture 503: 347-356. DOI: 10.1016/j.aquaculture.2018.11.051

Timmons, M. B., J. M. Ebeling & R.H. Piedrahita. 2009. Acuicultura en Sistemas de Recirculación. 1° ed. Cayuga Aqua Ventures. USA. 50-57 p.

Usaid-Harvest (United States Agency International Development). 2011. Feed Conversion Ratio (FCR). Technical bulletin 7. Available online at: https://pdf.usaid.gov/pdf_docs/PA00K8MQ.pdf (downloaded February 6, 2021).

Wang, F., L. Zhou. & J. Q. Zhao. 2018. The performance of biocarrier containing zinc nanoparticles in biofilm reactor for treating textile wastewater. Process Biochemistry 74: 125-131. DOI: 10.1016/j.procbio.2018.08.022

Yoon, S. H., S. M. Ha, S. Kwon, J. Lim, Y. Kim, H. Seo. & J. Chun. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. International Journal of Systematic and Evolutionary Microbiology 67: 1613-1617. DOI: 10.1099/IJSEM.0.00175

Downloads

Published

2023-10-11

How to Cite

Martínez, P., Ibáñez, A. L., Monroy H., O., Aguirre G., J. F., Maya P., E., & Ramírez-Saad, H. (2023). Effect of symbiotic administration on growth and intestinal microbiota variation of pacú (Piaractus mesopotamicus) in recirculating aquaculture systems. HIDROBIOLÓGICA, 34(1). Retrieved from https://hidrobiologica.izt.uam.mx/hidrobiologica/index.php/revHidro/article/view/1745

Issue

Section

Artículos