Macrobioerosión de corales constructores de arrecifes y su impacto en la dinámica de carbonatos en los arrecifes de Huatulco, México

Autores

  • Francisco Medellín-Maldonado Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México
  • Rebeca Granja-Fernández Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara
  • Tania M. González-Mendoza Departamento de Ecología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California
  • Diego Garcia-Medrano 3 Laboratorio de Arrecifes y Biodiversidad/ Laboratorio de Ecosistemas Costeros, Departamento de Hidrobiología, Universidad Autónoma Metropolitana – Iztapalapa
  • Rafael Cabral-Tena 5 Departamento de Ecología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada
  • Lorenzo Alvarez-Filip Biodiversity and Reef Conservation Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México.
  • Andrés López-Pérez Laboratorio de Arrecifes y Biodiversidad/ Laboratorio de Ecosistemas Costeros, Departamento de Hidrobiología, Universidad Autónoma Metropolitana – Iztapalapa

Palavras-chave:

bioerosión, balance de carbonatos, tomografía computarizada

Resumo

Antecedentes. Los arrecifes de coral subsisten gracias al delicado balance entre procesos de acreción y de erosión. No obstante, debido a presiones antropogénicas, los procesos bioerosivos se han convertido en los principales factores que condicionan los patrones de crecimiento de los arrecifes. Debido a la morfología de los arrecifes ubicados en el Pacífico sur mexicano (placas extensas de pocilopóridos), estimar la macrobioerosión interna se convierte en un reto, lo que resulta en una importante brecha sobre los procesos de bioerosión, particularmente los que ocurren al interior de los corales. Objetivo. Medir la macrobioerosión interna de las principales especies de coral y conocer el impacto que ejerce sobre la producción de carbonatos en los arrecifes. Métodos. Empleamos un enfoque basado en tomografía computarizada (TC) que permite medir el volumen de CaCO3 removido por diferentes grupos de macrobioerosionadores. Resultados. Estimamos porcentajes de macrobioerosión interna entre el 16.80 % y el 26.67 % del volumen total de las colonias de coral. Observamos que las esponjas y moluscos son los grupos que más bioerosionan las especies de coral con morfología ramificada y masiva, respectivamente. Encontramos tasas de macrobioerosión de 1.51 ± 0.11 kg CaCO3 m-2 año-1 para las especies ramificadas y de 0.53 ± 0.03 de kg CaCO3 m-2año-1 para las especies masivas. Los procesos de bioerosión representaron entre el 39.02 % y 43.86 % de la producción de CaCO3, que fue calculada mediante la metodología ReefBudget. Conclusiones. A pesar que emplear TC representa costos más elevados que otros enfoques (p. ej., rayos-X), hasta ahora es el único enfoque capaz de medir la macrobioerosión interna de todo el esqueleto de coral. Este enfoque permitirá producir balances de carbonatos más certeros que aquellos que no consideran la macrobioerosión interna, mejorando nuestras estimaciones del estado de salud en que se encuentran los arrecifes.

Downloads

Não há dados estatísticos.

Referências

Alvarado, J. J., J. Cortés., H. Guzmán & H. Reyes-Bonilla. 2016. Bioerosion by the sea urchin Diadema mexicanum along Eastern Tropical Pacific coral reefs. Marine Ecology 37(5): 1088-1102. DOI: 10.1111/ maec.12372

Alvarado-Rodríguez, J. F., L. E. Calderon-Aguilera, R. A. Cabral-Tena, C. O.

Norzagaray-López, H. Nava, L. Peiffer & R. G. Fernández-Aldecoa, 2022. High sclerobiont calcification in marginal reefs of the eastern tropical Pacific. Journal of Experimental Marine Biology and Ecology 557: 151800. DOI:10.1016/j.jembe.2022.151800

Alvarez-Filip, L., J. P. Carricart-Ganivet, G. Horta-Puga & R. Iglesias-Prieto. 2013. Shifts in coral-assemblage composition do not ensure persistence of reef functionality. Scientific Reports 3(1): 1-5. DOI:10.1038/ srep03486

Carballo, J. L., E. Bautista-Guerrero & G. E. Leyte-Morales. 2008. Boring sponges and the modeling of coral reefs in the east Pacific Ocean. Marine Ecology Progress Series 356: 113-122. DOI:10.3354/ meps07276

Chapa-Balcorta, C., J. M. Hernandez-Ayon, R. Durazo, E. Beier, S. R. Alin & A.

López-Pérez. 2015. Influence of post‐Tehuano oceanographic processes in the dynamics of the CO2 system in the Gulf of Tehuantepec, Mexico. Journal of Geophysical Research: Oceans 120(12): 7752-7770. DOI:10.1002/2015JC011249

Chazottes, V., P. Hutchings & A. Osorno. 2017. Impact of an experimental eutrophication on the processes of bioerosion on the reef: One Tree Island, Great Barrier Reef, Australia.

Marine Pollution Bulletin 118(1-2): 125-130. DOI:10.1016/j.marpolbul.2017.02.047

Cornwall, C. E., S. Comeau, N. A. Kornder, C. T. Perry, R. van Hooidonk, T. M. DeCarlo & R.

J. Lowe. 2021. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proceedings of the National Academy of Sciences 118(21): e2015265118. DOI:10.1073/pnas.2015265118

Cosain-Díaz, J. A., J. A. Tortolero-Langarica, A. P. Rodríguez-Troncoso, E.

Bautista-Guerrero, D. M. Antuna-Roman, P. Salazar-Silva & A. L. Cupul-Magaña. 2021. Internal bioerosion in massive corals associated with reef communities in the northeastern tropical Pacific: The effect of intrinsic and extrinsic factors. Ciencias Marinas 47(1): 33-47. DOI:10.7773/cm.v47i1.3047

Dana J.D., 1842. Zoophytes. United States Exploring Expedition during the years. Philadelphia: Lea and Blanchard; pp.1846-1849.

DeCarlo, T. M., A. L. Cohen, H. C. Barkley, Q. Cobban, C. Young, K. E. Shamberger & Y. Golbuu. 2015. Coral macrobioerosion is accelerated by ocean acidification and nutrients. Geology 43(1): 7-10. DOI:10.1130/G36147.1

Dee, S., T. M. DeCarlo, I. Lozić, J. Nilsen & N. K. Browne. 2023. Low bioerosion rates on inshore turbid reefs of Western Australia. Diversity 15(1): 62. DOI:10.3390/d15010062

Ellis, J. & D. C. Solander. 1786. The natural history of many curious and uncommon zoophytes: collected from various parts of the globe. (eds.). B. White and son. pp. 1-206 DOI:10.5962/bhl.title.64985

Enochs, I. C. & D. P. Manzello. 2012. Species richness of motile cryptofauna across a gradient of reef framework erosion. Coral Reefs 31: 653-661.

DOI:10.1007/s00338-012-0886-z

Enochs, I. C., D. P. Manzello, G. Kolodziej, S. H. Noonan, L. Valentino & K. E. Fabricius. 2016. Enhanced macroboring and depressed calcification drive net dissolution at high-CO2 coral reefs. Proceedings of the Royal Society B: Biological Sciences 283(1842): 20161742. DOI:10.1098/rspb.2016.1742

Enochs, I.C. & P.W. Glynn. 2017. Corallivory in the Eastern Pacific. In: Glynn, PW. Manzello, DP. & IC. Enochs (eds.). Coral reefs of the Eastern Tropical Pacific: persistance and loss in a dynamic enviroment. Dordrecht: Springer Science +Business Media, pp. 315–337.

DOI:10.1007/978-94-017-7499-4_10

Eyre, B. D., A. J. Andersson & T. Cyronak. 2014. Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nature Climate Change 4(11): 969-976.

DOI:10.1038/nclimate2380

Glynn, P.W., 1988. El Niño warming, coral mortality and reef framework destruction by echinoid bioerosion in the eastern Pacific. Galaxea 7:129-160

Glynn, P.W., 1999, Pocillopora inflata, a new species of scleractinian coral (Cnidaria: Anthozoa) from the tropical eastern Pacific. Pacific Science. 53: 168-180. [86]

Glynn, P. W. & D. P. Manzello. 2015. Bioerosion and coral reef growth: a dynamic balance. In: Birkeland, C (eds.). Coral reefs in the Anthropocene. Springer, Dordrecht, pp. 67-97.

DOI:10.1007/978-94-017- 7249-5_4

Herrera-Escalante, T., R. A. López-Pérez & G. E. Leyte-Morales. 2005. Bioerosion caused by the sea urchin Diadema mexicanum (Echinodermata: Echinoidea) at Bahías de Huatulco, Western Mexico. Revista de Biología Tropical 53(3): 263-273.

Kiene, W. E. & P. Hutchings. 1994. Bioerosion experiments at Lizard Island, Great Barrier Reef. Coral Reefs 13(2): 91-98. doi.org/10.1007/ BF00300767

Kline, D. I., L. Teneva, D. K. Okamoto, K. Schneider, K. Caldeira, T. Miard & O. Hoegh-Guldberg. 2019. Living coral tissue slows skeletal dissolution related to ocean acidification. Nature Ecology & Evolution 3(10): 1438-1444.

doi.org/10.1038/s41559-019-0988-x

Kuffner, I. B., L. T. Toth, J. H. Hudson, W. B. Goodwin, A. Stathakopoulos, L. A. Bartlett & E.

M. Whitcher. 2019. Improving estimates of coral reef construction and erosion with in situ measurements. Limnology and Oceanography 64(5): 2283-2294. DOI:10.1002/lno.11184

Lange, I. D., C. T. Perry & L. Alvarez-Filip. 2020. Carbonate budgets as indicators of functional reef “health”: A critical review of data underpinning census-based methods and current knowledge gaps. Ecological Indicators 110: 105857.

DOI:10.1016/j.ecolind.2019.105857

Lazar, B. & Y. Loya. 1991. Bioerosion of coral reefs: A chemical approach. Limnology and Oceanography 36(2): 377-383. DOI:10.1016/j.ecolind.2019.105857

Leggat, W. P., E. F. Camp, D. J. Suggett, S. F. Heron, A. J. Fordyce, S. Gardner & T. D. Ainsworth. 2019. Rapid coral decay is associated with marine heatwave mortality events on reefs. Current Biology 29(16): 2723- 2730. DOI:10.1016/j.cub.2019.06.077

López-Pérez, A. & D. A. López-López. 2016. Impacto bioerosivo de Diadema mexicanum en arrecifes de coral del Pacífico sur mexicano. Ciencias Marinas 42(1): 67-79.

DOI:10.7773/cm.v42i1.2586

López-Pérez, R. A., L. E. Calderón-Aguilera, H. Reyes-Bonilla, J. D. Carriquiry, P.

Medina-Rosas, A. L. Cupul-Magaña & B. M. Luna-Salguero. 2012. Coral communities and reefs from Guerrero, southern Mexican Pacific. Marine Ecology 33(4): 407-416.

DOI:10.1111/j.1439- 0485.2011.00505.x

López-Pérez, A., R. Granja-Fernández, O. Valencia-Méndez, C. Aparicio-Cid, A. M. Torres-Huerta, N. A. Barrientos-Luján & L. Hernández. 2019. Biodiversity associated with southern Mexican Pacific coral systems. In: Ibañez, A (eds.). Mexican Aquatic Environments: A General View from Hydrobiology to Fisheries. Springer, pp. 119-144.

DOI:10.1007/978-3-030-11126-7_5

Manzello, D. P., I. C. Enochs, G. Kolodziej & R. Carlton. 2015. Recent decade of growth and calcification of Orbicella faveolata in the Florida Keys: an inshore-offshore comparison.

Marine Ecology Progress Series 521: 81-89. DOI:10.3354/meps11085

Martínez-Castillo, V., A. P. Rodríguez-Troncoso, A. B. Mayfield, F. A. Rodríguez-Zaragoza &

A. L. Cupul-Magaña. 2022. Coral Recovery in the Central Mexican Pacific 20 Years after the 1997-1998 El Niño Event. Oceans 3(1): 48-59. DOI:10.3390/oceans3010005

Medellín-Maldonado, F., R. A. Cabral-Tena, A. López-Pérez, L. E. Calderón-Aguilera, C. Norzagaray-López, C. Chapa-Balcorta & R. C Zepeta-Vilchis. 2016. Calcificación de las principales especies de corales constructoras de arrecifes en la costa del Pacífico del sur de México. Ciencias Marinas 42(3): 209-225. DOI:10.7773/cm.v42i3.2650

Medellín-Maldonado, F., A. López-Pérez, L. Ruiz-Huerta & J. P. Carricart-Ganivet. 2022. Understanding corallite demography to comprehend potential bias in sclerochronology: Analysis of coral modular growth by micro‐computed tomography. Limnology and Oceanography 67(12): 2665-2676. DOI:10.1002/lno.12229

Mollica, N. R., W. Guo, A. L. Cohen, K. F. Huang, G. L. Foster, Donald & A. R. Solow, 2018. Ocean acidification affects coral growth by reducing skeletal density. Proceedings of the National Academy of Sciences 115(8): 1754-1759. DOI:10.1073/pnas.171280611

Morais, J., R. Morais, S. B Tebbett & D. R. Bellwood. 2022. On the fate of dead coral colonies. Functional Ecology 36(12): 3148-3160. DOI:10.1111/1365-2435.14182

Nava, H. & J. L. Carballo. 2008. Chemical and mechanical bioerosion of boring sponges from Mexican Pacific coral reefs. Journal of Experimental Biology 211(17): 2827-2831. DOI:10.1242/jeb.019216

Osorno, A., M. Peyrot-Clausade & P. A. Hutchings. 2005. Patterns and rates of erosion in dead Porites across the Great Barrier Reef (Australia) after 2 years and 4 years of exposure. Coral Reefs 24(2): 292-303. DOI:10.1007/s00338-005-0478-2

Pernice, M., J. B. Raina, N. Rädecker, A. Cárdenas, C. Pogoreutz & C. R. Voolstra. 2020. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. The ISME Journal 14(2): 325-334. DOI:10.1038/s41396-019-0548-z

Perry, C. T. & L. J. Hepburn. 2008. Syn-depositional alteration of coral reef framework through bioerosion, encrustation and cementation: taphonomic signatures of reef accretion and reef depositional events. Earth-Science Reviews 86(1-4): 106-144. DOI:10.1016/j. earscirev.2007.08.006

Perry, C. T., T. Spencer & P. S. Kench. 2008. Carbonate budgets and reef production states: a geomorphic perspective on the ecological phase-shift concept. Coral Reefs 27(4):

-866. DOI:10.1007/ s00338-008-0418-z

Perry, C.T., G.N. Murphy, P.S. Kench, E.N. Edinger, S.G. Smithers, R.S. Steneck & P.J. Mumby. 2014. Changing dynamics of Caribbean reef carbonate budgets: emergence of reef bioeroders as critical controls on present and future reef growth potential. Proceedings of the Royal Society of London, Series B 281: 2014-2018. DOI:10.1098/ rspb.2014.2018

Perry, C. T. & L. Alvarez-Filip. 2019. Changing geo‐ecological functions of coral reefs in the Anthropocene. Functional Ecology 33(6): 976-988. DOI:10.1111/1365-2435.13247

Reyes-Bonilla, H & G. E. Leyte-Morales. 1998. Corals and coral reefs of the Puerto Angel region, west coast of Mexico. Revista de Biología Tropical 46(3): 679-681.

Rice, M. M., R. L. Maher, A. M. Correa, H. V. Moeller, N. P. Lemoine, A. A. Shantz & N. J. Silbiger. 2020. Macroborer presence on corals increases with nutrient input and promotes parrotfish bioerosion. Coral Reefs 39: 409-418. DOI:10.1007/s00338-020-01904-y

Schönberg, C. H., J. K. Fang, M. Carreiro-Silva, A. Tribollet & M. Wisshak. 2017. Bioerosion: the other ocean acidification problem. ICES Journal of Marine Science 74(4): 895-925.

DOI:10.1093/icesjms/ fsw254

Tribollet, A & S. Golubic. 2011. Reef bioerosion: agents and processes. In: Dubinsky, Z. & N. Stambler (eds.). Coral Reefs: An Ecosystem in Transition. Springer, Dordrecht, pp. 435-449. DOI:10.1007/978-94- 007-0114-4_25

Tribollet, A., A. Chauvin & P. Cuet. 2019. Carbonate dissolution by reef microbial borers: a biogeological process producing alkalinity under different pCO2 conditions. Facies 65(2), 9. DOI:10.1007/s10347- 018-0548-x

Tribollet, A., A. Chauvin & P. Cuet. 2022. Natural photosynthetic microboring communities produce alkalinity in seawater whereas aragonite saturation state rises up to five. Frontiers in Earth Science 10:894501. DOI:10.3389/feart.2022.894501

Verrill A.E., 1864. Revision of the polypi of the eastern coast of the United States. Boston: Boston Society of Natural History 1. 45p.

Wizemann, A., S. D. Nandini, I. Stuhldreier, C. Sánchez-Noguera, Wisshak, M. Westphal &

C. E. Reymond. 2018. Rapid bioerosion in a tropical upwelling coral reef. PloS One 13(9): e0202887. DOI:10.1371/journal. pone.0202887

Navarrete-Torices, C. R., H. Reyes-Bonilla y R. A. Cabral-Tena Descripción de la funcionalidad física en los arrecifes de coral de Isla Espíritu Santo, La Paz, Baja California Sur 19

-200

Álvarez-Filip, L., N. K. Dulvy, I. M. Côteé, A. R. Watkinson & J. A. Gill. 2011. Coral identity underpins architectural complexity on Caribbean reefs. Ecological Applications 21 (6): 2223-2231. DOI: 10.1890/10-1563.1

Álvarez-Filip, L., J. P. Carricart-Ganivet, G. Horta-Puga & R. Iglesias-Prieto. 2013. Shifts in coral-assemblage composition do not ensure persistence of reef functionality. Scientific Reports 3: 1-5. DOI: 10.1038/srep03486

Arreola-Robles, J. L. 1998. Diversidad de peces de arrecife en la región de La Paz, B.C.S., México. Tesis de maestría. Centro Interdisciplinario de Ciencias Marinas, México. 82 p.

Bezy, M. B., C. Jiménez, J. Cortés, A. Segura, A. León, J. J. Alvarado, C. Gillén & E. Mejía. 2006. Contrasting Psammocora-dominated coral communities in Costa Rica, tropical eastern Pacific. Proceedings of 10th International Coral Reef Symposium, Okinawa 376-381.

Cabral-Tena, R. A., H. Reyes-Bonilla, S. Lluch-Cota, D. A. Paz-García, L. E.

Calderón-Aguilera, O. Norzagaray-López & E. F. Balart. 2013. Different calcification rates in males and females of the coral Porites panamensis in the Gulf of California. Marine Ecology Progress Series 476: 1-8. DOI: 10.3354/meps10269

Cabral-Tena, R. A., A. López-Pérez, H. Reyes-Bonilla, L. E. Calderón-Aguilera, C. O. Norzagaray-López, F. A. Rodríguez-Zaragoza, A. Cupul-Magaña, A. P. Rodríguez-Troncoso & A. Ayala-Bocos. 2018. Calcification of coral assemblages in the eastern Pacific: Reshuffling calcification scenarios under climate change. Ecological Indicators 95: 726-734. DOI: 10.1016/j.ecolind.2018.08.021

Cabral-Tena, A. R., A. López-Pérez, L. Álvarez-Filip, F. J. González-Barrios, L. E.

Calderón-Aguilera & C. Aparicio-Cid. 2020. Functional potential of coral assemblages along a typical Eastern Tropical Pacific reef tract. Ecological Indicators 119: 106795. DOI: 10.1016/j.ecolind.2020.106795

Calderón-Aguilera, L. E., H. Reyes-Bonilla, M. A. Olán-González, F. R. Castañeda-Rivero &

J. C. Perusquía-Ardón. 2021. Estimated flows and biomass in a no-take coral reef from the eastern tropical Pacific through network analysis. Ecological Indicators 123: 107359. DOI: 107359. 10.1016/j.ecolind.2021.107359

Coates, A. G. & J. B. C. Jackson. 1987. Coral growth, algal symbiosis, and reef formation by corals. Paleobiology 13 (4): 363-378. DOI: 10.1017/S0094837300008988

CONANP (Comisión Nacional de Áreas Naturales Protegidas). 2001. Programa de Manejo del Complejo Insular del Espíritu Santo. SEMARNAT, México, 164 p.

CONANP (Comisión Nacional de Áreas Naturales Protegidas). 2014. Programa de Manejo del Parque Nacional Exclusivamente la Zona Marina del Archipiélago de Espíritu Santo.

SEMARNAT-CONANP, México, 226 p.

Cortés, J., I. Enochs, J. Sibaja-Cordero, L. Hernández, J. Alvarado, O. Breedy, J.

Cruz-Barraza, O. Esquivel, C. Fernández-García, A. Hermosillo, K. Kaiser, P. Medina-Rosas, Á. Morales-Ramírez, C. Pacheco, A. Pérez-Matus, H. Reyes-Bonilla, R.

Riosmena-Rodríguez, C. Sánchez Noguera, E. Wieters & F. Zapata. 2017. Marine Biodiversity of Eastern Tropical Pacific Coral Reefs. In: Glynn, P., Manzello, D. & I. Enochs (Eds.). Coral Reefs of the World. Vol. 8. Springer, pp. 203-250. DOI: 10.1007/978-94-

-7499-4_7

Darling, E. S., T. R. McClanahan, J. Maina, G. G. Gurney, N. A. J. Graham, F. Januchowski-Hartley, J. E. Cinner, C. Mora, C. C. Hicks, E. Maire, M. Puotinen, W. J. Skirving, M. Adjeroud, G. Ahmadia, R. Arthur, A. G. Bauman, M. Beger, M. L. Berumen, L.

Bigot, L., … D. Mouillot. 2019. Social–environmental drivers inform strategic management of coral reefs in the Anthropocene. Nature Ecology and Evolution 3 (9): 1341-1350. DOI: 10.1038/s41559-019-0953-8

González-Barrios, F. J. & L. Álvarez-Filip. 2018. A framework for measuring coral

species-specific contribution to reef functioning in the Caribbean. Ecological Indicators 95: 877-886. DOI: 10.1016/j.ecolind.2018.08.038

González-Barrios, F. J., R. A. Cabral-Tena & L. Álvarez-Filip. 2021. Recovery disparity between coral cover and the physical functionality of reefs with impaired coral assemblages. Global Change Biology 27: 640-65.

González-Medina, F. J. 2004. Variación espacio temporal de algunos macroinvertebrados bentónicos del Archipiélago Espíritu Santo, B. C. S. México. Tesis de Maestría. Centro Interdisciplinario de Ciencias Marinas, México. 82 p.

González-Medina, F., O. Holguín-Quiñones & G. De la Cruz-Agüero. 2006. Variación espaciotemporal de algunos macroinvertebrados (Gastropoda, Bivalvia y Echinodermata) de fondos someros del Archipiélago Espíritu Santo, Baja California Sur, México. Ciencias Marinas 32 (1A): 33-44.

Graham, N. A. J. & K. L. Nash. 2013. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32: 315-326. DOI: 10.1007/s00338-012-0984-y

Guzmán-Méndez, I. A. 2009. Estructura de las asociaciones de algunos invertebrados del archipiélago Espíritu Santo, Baja California Sur, México. Tesis de Maestría. Centro Interdisciplinario de ciencias Marinas, México. 100 p.

LaJeunesse, T., R. T. Smith, M. Walther, J. C. Pinzón, D. Pettay, M. Mcginley, M. Aschaffenburg, P. Medina-Rosas, A. Cupul-Magaña, A. López-Pérez, H. Reyes-Bonilla & M. Warner. 2010. Host-symbiont recombination versus natural selection in the response of coral-dinoflagellate symbioses to environmental disturbance. Proceedings of The Royal Society 277: 2925-2934. DOI: 10.1098/rspb.2010.0385

López-Pérez, A., M. G. Mora-Pérez & G. E. Leyte-Morales. 2007. Coral (Anthozoa: Scleractinia) recruitment at Bahías de Huatulco, western México: Implications for coral community structure and dynamics. Pacific Science 61 (3): 355-369.

López-Pérez, A., R. Granja-Fernández, O. Valencia-Méndez, C. Aparicio-Cid, A. Torres, N.

A. Barrientos-Luján, F. Benítez-Villalobos & L. Hernández. 2019. Biodiversity associated with Southern Mexican Pacific coral systems. In: Ibáñez, A. (Ed.) Mexican Aquatic Environments. Springer, pp. 119-144. DOI: 10.1007/978-3-030-11126-7_5

Manzello, D. 2010. Coral growth with thermal stress and ocean acidification: Lessons from the eastern tropical Pacific. Coral Reefs 29: 749-758. DOI: 10.1007/s00338-010-0623-4

Martínez, M. L., A. Intralawan, G. Vázquez, O. Pérez-Maqueo, P. Sutton & R. Landgrave. 2007. The coasts of our world: Ecological, economic, and social importance. Ecological Economics 63: 254-272.

Martínez-Ávila, C. A. 2022. Cambios en la funcionalidad física del arrecife de Cabo Pulmo entre 1992-2020. Tesis de maestría. Centro de Investigación Científica y de Educación Superior de Ensenada, México. 56 p

Martínez-Sarabia, P. 2022. Evaluación de técnicas de restauración coralina y su influencia en la estructura y función de la ictiofauna asociada. Tesis de Doctorado. Universidad Autónoma de Baja California Sur, México. 147 p.

Medellín-Maldonado, F., R. A. Cabral-Tena, A. López-Pérez, L. E. Calderón-Aguilera, O. Norzagaray-López, C. Chapa-Balcorta & R. Zepeta-Vilchis. 2016. Calcification of the main reef-building coral species on the Pacific coast of southern México. Ciencias Marinas 42: 209- 225. DOI: 10.7773/cm.v42i3.2650

Norzagaray-López, C. O., J. M. Hernández-Ayón, L. E. Calderón Aguilera, H. Reyes-Bonilla,

C. Chapa-Balcorta & A. Ayala-Bocos. 2017. Aragonite saturation and pH variation in a fringing reef are strongly influenced by oceanic conditions. Limnology and Oceanography 62

(6): 2375- 2388. DOI: 10.1002/lno.10571

Norzagaray-López, O., L. Calderón-Aguilera, L. Barranco, R. A. Cabral-Tena, J. P. Carricart-Ganivet, A. Cupul-Magaña, G. Horta-Puga, A. López-Pérez, H. Pérez-España, H. Reyes-Bonilla, A. Rodríguez-Troncoso & A. Tortolero-Langarica. 2019. Arrecifes y comunidades coralinas. In: Paz-Pellat, F., J. M. Hernández-Ayón, R. Sosa-Ávalos & A. S.

Velázquez-Rodríguez (Eds.). Estado del Ciclo del Carbono: Agenda Azul y Verde. Programa Mexicano del Carbono, pp. 127-149.

Paz-García, D., A. Aldana-Moreno, R. A. Cabral-Tena, F. García De León, M. Hellberg & E. Balart. 2015. Morphological variation and different branch modularity across contrasting flow conditions in dominant Pocillopora reef-building corals. Oecologia 178: 207-218. DOI: 10.1007/s00442-014-3199-9

Perera-Valderrama, S., H. Caballero, E. Santamaría-Del Ángel, L. ÁlvarezFilip, S.

Cerdeira-Estrada, R. Martell-Dubois, L. Rosique-de la Cruz & R. Ressl. 2020. Arrecifes coralinos. In: Perera-Valderrama, S., Cerdeira-Estrada, S., Martell-Dubois, R., Rosique-de la Cruz, L. O., Caballero-Aragón & T. Ressl (Coords.). Protocolos de monitoreo de la biodiversidad marina en áreas naturales protegidas del Caribe mexicano. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, pp. 31-81. DOI: 10.25607/OBP-915

Plaisance L., M. J. Caley, R. E. Brainard & N. Knowlton. 2011. The diversity of coral reefs: What are we missing?. PLoS ONE 6 (10): e25026. DOI: 10.1371/journal.pone.0025026

Reyes-Bonilla, H. & R. A. López-Pérez. 2009. Corals and coral-reef communities in the Gulf of California. In: M. E. Johnson & J. Ledesma-Vásquez (Eds.). Atlas of Coastal Ecosystems in the Gulf of California: Past and Present. University of Arizona Press, pp. 45-57.

Reyes-Bonilla, H., P. Cárdenas, L. Calderón-Aguilera, C. Ricárdez, F. Fernández-Rivera Melo, T. Frausto, B. Salguero, X. Moreno-Sánchez, M. Torres, O. Norzagaray-López & D. Petatán. 2014a. Servicios ambientales de arrecifes coralinos: el caso del Parque Nacional Cabo Pulmo, B.C.S. In: Urciaga-García, J. I. (Ed.). Desarrollo Regional en Baja California Sur: Una perspectiva de los servicios ecosistémicos. UABCS-Ediciones del Norte, pp.

-77.

Reyes-Bonilla, H., L. Calderón-Aguilera, C. Mozqueda-Torres & J. D. Carriquiry. 2014b. Presupuesto de carbono en arrecifes coralinos de México. Interciencia 39 (9): 645-650.

Rodríguez-Troncoso, A. P. & J. J. A. Tortolero-Langarica. 2014. Corales: Organismos base constructores de los ecosistemas arrecifales. In: Cifuentes-Lemus, J. L. & F. G.

Cupul-Magaña (Eds.). Temas de investigación costera. Universidad de Guadalajara, pp. 33-55.

Romero-Torres, M., A. Acosta, A. M. Palacio-Castro, E. A. Treml, F. A. Zapata, D. A. Paz-García & J. W. Porter. 2020. Coral reef resilience to thermal stress in the eastern tropical Pacific. Global Change Biology 26: 3880-3890. DOI: 10.1111/gcb.15126

Selig, E. R. & J. F. Bruno. 2010. A global analysis of the effectiveness of marine protected areas in preventing coral loss. PLoS ONE 5 (2): e9278. DOI: 10.1371/journal.pone.0009278

Spalding, M., L. Burke, S. Wood, J. Ashpole, J. Hutchinson & P. Ermgassen. 2017. Mapping the global value and distribution of coral reef tourism. Marine Policy 82: 104-113. DOI: 10.1016/j.marpol.2017.05.014

Tizol-Rosado, D. F. 2019. Influencia de la complejidad del hábitat sobre la variación espacio-temporal de la macrofauna en arrecifes rocosos de la bahía de la Paz. Tesis de maestría. Centro Interdisciplinario de ciencias Marinas, México. 113 p.

Tortolero-Langarica, A., A. Rodríguez-Troncoso, A. Cupul-Magaña & J. P. Carricart-Ganivet. 2017a. Calcification and growth rate recovery of the reef-building Pocillopora species in the northeast tropical Pacific following an ENSO disturbance. PeerJ 5: e3191. DOI: 10.7717/ peerj.3191

Tortolero-Langarica, A., J. P. Carricart-Ganivet, A. Cupul-Magaña & A. Rodríguez-Troncoso. 2017b. Historical insights on growth rates of the reef-building corals Pavona gigantea and Porites panamensis from the Northeastern tropical Pacific. Marine Environmental Research 132: 23-32. DOI: 10.1016/j.marenvres.2017.10.004

Publicado

2023-05-10

Como Citar

Medellín-Maldonado, F., Granja-Fernández, R., González-Mendoza, T. M., Garcia-Medrano, D., Cabral-Tena, R., Alvarez-Filip, L., & López-Pérez, A. (2023). Macrobioerosión de corales constructores de arrecifes y su impacto en la dinámica de carbonatos en los arrecifes de Huatulco, México. HIDROBIOLÓGICA, 33(2). Recuperado de https://hidrobiologica.izt.uam.mx/hidrobiologica/index.php/revHidro/article/view/1740

Edição

Seção

Artículos

Artigos mais lidos pelo mesmo(s) autor(es)