El ecosistema mesofótico del archipiélago Espíritu Santo como refugio ante el cambio climático
Palavras-chave:
Ecología de arrecifes profundo, cambio climático, conservación, servicios ecosistémicos, degradación de ecosistemasResumo
Antecedentes. Los ambientes costeros como la zona entremareal y los arrecifes rocosos y coralinos están expuestos a perturbaciones naturales como las mareas, tormentas, huracanes y ciclones y actividades hu-manas como la pesca, turismo y contaminación. La hipótesis del refugio profundo postula que los organismos que pueden habitar a mayores profundidades serían menos vulnerables a los impactos antropogénicos, el calentamiento superficial del mar derivado del efecto invernadero y a la acidificación del océano provocada por el incremento en la presión parcial de CO2. En consecuencia, los arrecifes rocosos o coralinos profundos podrían funcionar como un “seguro” contra los efectos del cambio climático. Objetivos. Analizar variables abióticas y bióticas del ecosistema mesofótico del archipiélago Espíritu Santo, BCS para considerarlo como refugio ante perturbaciones relacionadas con el cambio climático. Métodos. Batimetría, determinación de la zona euofótica, perfiles de temperatura, salinidad y oxígeno disuelto, muestreos en aguas someras y profundas, recolección de agua para análisis del sistema de carbonatos, videotransectos con vehículos de operación remota para la identificación de especies bénticas y estimación de su abundancia, incluyendo las de importancia comercial o de conservación. Cálculo de índices ecológicos y del índice de función arrecifal. Resultados. La profundidad máxima registrada fue de 78 m y el inicio de la zona mesofótica (10% de pene-tración luminosa) más somero fue de 11 m; la temperatura no muestra una estratificación ni en abril ni en octubre de 2021, pero la salinidad registra un pico cerca de los 30 m de profundidad y el oxígeno disuelto disminuye a los 20 m. La W aragonita está por debajo de 3.0; hay variación espacial en los índices estructu-rales de la comunidad béntica y el índice de función arrecifal se encuentra entre 0.16 y 0.65. Conclusiones. Hay variaciones espaciales que limitan afirmar que el ecosistema mesofótico pueda servir de refugio ante el cambio climático en esta localidad.
Downloads
Referências
Baker, E.K., K.A. Puglise & P.T. Harris (eds). 2016. Mesophotic coral ecosystems — A lifeboat for coral reefs? The United Nations Environment Programme and GRID-Arendal, Nairobi and Arendal, 98 p.
Bloomberg, J. & D.M. Holstein. 2021. Mesophotic coral refuges following multiple disturbances, Coral Reefs 40(3): 821–834. DOI: 10.1007/ s00338-021-02087-w
Bongaerts, P., T. Ridgway, E. Sampayo & O. Hoegh-Guldberg. 2010. Assessing the ‘Deep Reef Refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 29: 309-327. DOI: 10.1007/s00338-009-0581-x
Bongaerts, P., C. Riginos, R. Brunner, N. Englebert, S.R. Smith & O. Hoegh-Guldberg. 2017. Deep reefs are not universal refuges: reseeding potential varies among coral species.
Science Advances 3(2): e1602373. DOI: 10.1126/sciadv.1602373
Cabral-Tena, R.A., A. López-Pérez, L. Alvarez-Filip, F. J. González-Barrios, L. E.
Calderon-Aguilera & C. Aparicio-Cid. 2020. Functional potential of coral assemblages along a typical Eastern Tropical Pacific reef tract. Ecological Indicators 119. DOI: 10.1016/j.ecolind.2020.106795
Cepeda-Morales, J., G. Gaxiola-Castro, E. Beier & V.M. Godínez. 2013. The mechanisms involved in defining the northern boundary of the shallow oxygen minimum zone in the eastern tropical Pacific Ocean off Mexico. Deep Sea Research Part I: Oceanographic Research Papers 76: 1–12. DOI: 10.1016/j.dsr.2013.02.004
Clark, K. R. & R. N. Gorley. 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E. Plymouth. 190 pp.
Eyal. G., R. Tamir, N. Kramer, L. Eyal-Shaham & Y. Loya. 2019. The Red Sea: Israel. In: Loya Y, K.A. Puglise & T.C.L. Bridge (eds). Mesophotic coral ecosystems. Springer, New York, pp 199-214.
Gamero-Huayhua, D.A. 2017. Estructura de la Comunidad de Abanicos de Mar (Cnidaria: Octocorallia) del Golfo de California. Tesis de Maestría en Ciencias, UABCS, La Paz. 76 pp.
González-Barrios, F.J. & L. Álvarez-Filip. 2018. A framework for measuring coral
species-specific contribution to reef functioning in the Caribbean. Ecological Indicators 95: 877-886. DOI: 10.1016/j.ecolind.2018.08.038
Glynn, P.W. 1996. Coral reef bleaching: facts, hypotheses, and implications. Global Change Biology 2(6): 495-509. DOI: 10.1111/j.1365- 2486.1996.tb00063.x
González-Medina, F. J., O.E. Holguín-Quiñones & G. de la Cruz-Agüero. 2006. Variación espaciotemporal de algunos macroinvertebrados (Gastropoda, Bivalvia y Echinodermata) de fondos someros del Archipiélago Espíritu Santo, Baja California Sur, México. Ciencias Marinas 32(1 A): 33-44. DOI: 10.7773/cm.v32i1.67
Hollarsmith, J. A., G. Ramirez-Ortiz, T. Winquist, M. Velasco-Lozano, K. DuBois, H.
Reyes-Bonilla, K. C. Neumann & E. D. Grosholz. 2020. Habitats and fish communities at mesophotic depths in the Mexican Pacific. Journal of Biogeography 47(7): 1552-1563. DOI: 10.1111/jbi.13842
Keppel, G., K.P. Van Niel, G.W. Wardell-Johnson, C.J. Yates, M. Byrne, L. Mucina, A.G. Schut, S.D. Hopper & S.E. Franklin. 2012. Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography 21(4): 393-404. DOI: 10.1111/j.1466-8238.2011.00686.x
Kleypas, J. A., R.W. Buddemeier, D. Archer, J.P. Gattuso, C. Langdon & B.N. Opdyke. 1999. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs.
Science 284(5411): 118-120. DOI: 10.1126/science.284.5411.118
Lauer, D. A. & M. L. Reaka. 2022. Depth distributions of benthic and pelagic species highlight the potential of mesophotic and deep habitats to serve as marine refugia. Marine Ecology Progress Series 700: 39-52. DOI: 10.3354/meps14180
Lesser, M. P., M. Slattery & J.J. Leichter. 2009. Ecology of mesophotic coral reefs. Journal of Experimental Marine Biology and Ecology 375(1-2): 1-8. DOI:10.1016/j.jembe.2009.05.009
Loiseau, N., S. Villéger, C. Le Bozec, M. Gimenez, S.L. Kawahara & T. Claveri. 2022. Mesophotic reefs are not refugia for neither taxonomic nor functional diversity of reef fishes. Coral Reefs: 1-13. DOI: 10.1007/ s00338-022-02311-1
Loya, Y., G. Eyal, T. Treibitz, M.P. Lesser & R. Appeldoorn. 2016. Theme section on mesophotic coral ecosystems: advances in knowledge and future perspectives. Coral Reefs 35: 1-9. DOI: 10.1007/s00338- 016-1410-7
NASA (National Aeronautics and Space Administration) Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. 2022. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Data; NASA OB. DAAC, Greenbelt, MD, USA. Available online at https://oceancolor.gsfc.nasa.gov/data/aqua/ (downloaded August 13, 2022).
Pérez-Castro, M.A., N. Schubert, G. A. M. De Oca, G. E. Leyte-Morales, G. Eyal & G. Hinojosa-Arango. 2022. Mesophotic Coral Ecosystems in the Eastern Tropical Pacific: The current state of knowledge and the spatial variability of their depth boundaries. Science of the Total Environment: 806. DOI: 10.1016/j.scitotenv.2021.150576
Ramírez-Ortiz, G., H. Reyes-Bonilla, E. F. Balart, D. Olivier, L. Huato-Soberanis, F. Micheli &
G. J. Edgar. 2020. Reduced fish diversity despite increased fish biomass in a Gulf of California Marine Protected Area. PeerJ, 8: e8885. DOI: 10.7717/peerj.8885
SEMARNAT-CONANP. 2014. Programa de Manejo Parque Nacional exclusivamente la zona marina del Archipiélago de Espíritu Santo. Secretaría de Medio Ambiente y Recursos Naturales. Comisión Nacional de Áreas Naturales Protegidas. México. 232 p.
Smith, T.B., P. W. Glynn, J. L. Maté, L. T. Toth & J. Gyory. 2014. A depth refugium from catastrophic coral bleaching prevents regional extinction. Ecology 95(6): 1663-1673.
DOI:10.1890/13-0468.1
Tamir, R., G. Eyal, N. Kramer, J. H. Laverick & Y. Loya. 2019. Light environment drives the shallow‐to‐mesophotic coral community transition. Ecospher 10(9). DOI:10.1002/ecs2.2839
Tripp-Quezada, A., A. Bosch-Callar, A. Tripp-Valdez, M. A. Tripp-Valdez, M. Villalejo-Fuerte & N. Capetillo-Piñar. 2022. Spatial variation of assemblages of soft-bottom benthic mollusks from Espiritu Santo archipelago, Gulf of California, Mexico. Hidrobiológica 32(1): 1-16. DOI: 10.24275/uam/izt/dcbs/hidro/2022v32n1/Tripp
Velasco-Lozano, M. F., G. Ramírez-Ortiz, H. Reyes-Bonilla & J. A. Hollarsmith 2020. Fish assemblages at mesophotic depths in the Pacific: A comparison between continental and oceanic islands of Mexico. Ciencias Marinas 46(4): 321-342. DOI:10.7773/cm.v46i4.3112
Ying, J., M. W. Collins, A. Cai, P. Timmermann, D. Huang Chen & K. Stein. 2022. Emergence of climate change in the tropical Pacific. Nature Climate Change 12(4): 356-364. DOI: 10.1038/s41558-022-01301-z
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, HIDROBIOLÓGICA reconoce y respeta el derecho moral de los autores, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Publicar en la revista HIDROBIOLÓGICA tiene un costo de recuperación de $500 pesos mexicanos por página en blanco y negro (aproximadamente 29 dólares americanos) y $1000 pesos por página a color (aproximadamente 58 dólares americanos).
Todos los textos publicados por HIDROBIOLÓGICA sin excepción se distribuyen amparados bajo la licencia Creative Commons 4.0Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en HIDROBIOLÓGICA (por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en HIDROBIOLÓGICA.
Para todo lo anterior, el o los autor(es) deben remitir el formato de Carta-Cesión de la Propiedad de los Derechos de la primera publicación debidamente requisitado y firmado por el autor(es). Este formato se puede enviar por correo electrónico en archivo pdf al correo: enlacerebvistahidrobiológica@gmail.com; rehb@xanum.uam.mx (Carta-Cesión de Propiedad de Derechos de Autor).
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.