Macroalgae blooms, composition, abundance, and their relationship with environmental variables at a subtropical bay of the Gulf of California

Autores

  • Alejandra Piñón-Gimate Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas.
  • Elisa Serviere Zaragoza Centro de Investigaciones Biológicas del Noroeste SC, La Paz, BCS 23205, México
  • Tonatiuh Chávez-Sánchez Centro de Investigaciones Biológicas del Noroeste, S.C.
  • Margarita Casas-Valdez Centro Interdisiplinario de Ciencias Marinas, IPN

Palavras-chave:

biomass, environmental variability, La Paz Bay, seaweed blooms

Resumo

Background: In La Paz Bay macroalgae blooms have an important presence. Goal: Analyze the relationship of the most abundant macroalgae in algal blooms with environmental variability in a subtropical bay over two years. Methods: Temperature, salinity, nutrients (DIN, NT, PO4-3 and PT) and macroalgae samples were taken every three months, during 2010 and 2011, at four sites with conspicuous growth of macroalgae. Total and mean biomass (wet weight) of important species was estimated by placing three transects perpendicular to the coast, divided into five equidistant points each. At each point four quadrants (0.25 m2 ) were placed randomly and macroalgae were manually collected. Statistical analyzes were performed to estimate significant differences between years, months and sites of the environmental variables, nutrients, and biomass. A principal component analysis was performed, to observe the relationship between biomass and environmental variables and nutrients. Results: Nine macroalgae species, plus one cyanoprokaryonte showed a biomass greater than 1 g m-2. Acanthophora spicifera, Caulerpa verticillata and Spyridia filamentosa were the most abundant species. A. spicifera and G. vermiculophylla were related with nutrient concentrations, and salinity. While Ulva ohnoi showed that it was not related either to environmental or nutrient concentrations. Conclusion: The bloom forming macroalgae A. spicifera, C. verticillata and S. filamentosa are consistent with genera previously reported as bloom-formers in nutrient-rich coastal waters.

Downloads

Não há dados estatísticos.

Referências

REFERENCES
Abbott, I. A. & G. Hollenberg. 1976. Marine algae of California. Stanford University Press, Stanford, CA. 827 p.
Águila-Ramírez, R. N., M. M. Casas-Valdez, C. J. Hernández-Guerrero & A. Marín-Álvarez. 2005. Biomass of Ulva spp. (Chlorophyta) in three locations along the bay front of La Paz, Baja California Sur, México. Revista de Biología Marina y Oceanografía 40 (1): 55–61.
Aguilera-Morales, M., M. M. Casas-Valdez, S. Carrillo-Domínguez, B. González-Acosta & F. Pérez-Gil. 2005. Chemical composition and microbiological assays of marine algae Enteromorpha spp. as a potential food source. Journal of Food Composition and Analysis 18 (1): 79–88.
Antonio-Robles, J., A. Piñón-Gimate, A. Sánchez, R. Cervantes-Duarte, J. A. Arreola-Lizárraga & M. Casas-Valdez. 2021. Environmental assessment of three different sites in shallow environments of La Paz Bay (Gulf of California) using the TRIX index and macroalgae biomass. Part I. Regional Studies in Marine Science 48: 102041.
Ávila, E., M. D. C. Méndez‐Trejo, R. Riosmena‐Rodríguez, J. M. López‐Vivas & A. Sentíes. 2012. Epibiotic traits of the invasive red seaweed Acanthophora spicifera in La Paz Bay, south Baja California (eastern Pacific). Marine Ecology 33 (4): 470–480.
Ballesteros-Grijalva, G., J. A. Zertuche-González & M. G. García-Lepe. 1996. Seasonal biomass variation of Chondracanthus canaliculatus (Rhodophyta, Gigartinales) associated with environmental factors, using a principal component analysis. Ciencias Marinas 22: 459–467.
Carballo, J. L., C. Olabarria & T. G. Osuna. 2002. Analysis of four macroalgal assemblages along the Pacific Mexican coast during and after the 1997–98 El Nino. Ecosystems 5 (8): 0749-0760.
Casas-Valdez, M. M., M. B. Cruz-Ayala & G. Elizabeth-Lopez. 1997. Algas Marinas bentónicas más abundantes de la bahía de la Paz, B. C. S. In: Urban, J. & M. Ramírez (eds.). La Bahía de La Paz investigación y conservación. UABCS-CICIMAR-SCRIPPS, pp. 83–91.
Casas-Valdez, M., R. A. Nuñez-López, M. B. Cruz-Ayala, I. Sánchez-Rodríguez, R. Vázquez-Borja & G. E. López. 2000. Biodiversity and biogeographic affinities of the algal flora of Baja California Sur: synthesis of the literature. In: M. Munawar, S. G. Lawrence, I. F. Munawar & D. F. Malley (eds.) Aquatic Ecosystems of Mexico: Status and scope. Leiden, Backhuys Publishers. pp. 273–282.
Cruz-Ayala, M. B., M. Casas-Valdez & S. Ortega-García. 1998. Temporal and spatial variation of frondose benthic seaweeds in La Paz Bay, B.C.S., México. Botanica Marina 41: 191–198.
Cruz-Motta, J. J., P. Miloslavich, E. Guerra-Castro, A. Hernández-Agreda, C. Herrera, F. Barros et al. 2020. Latitudinal patterns of species diversity on South American rocky shores: local processes lead to contrasting trends in regional and local species diversity. Journal of Biogeography 47(9): 1966–1979. https:// doi. org/ 10.1111/ jbi. 13869
Fletcher, R. L. 1996. The occurrence of ‘‘green tides’’ a review. In: Schramm, W. & P. H. Nienhuis (eds.). Marine benthic vegetation: recent changes and the effects of eutrophication. Springer, Berlin. pp. 7–43.
Gaspar, R., L. Pereira & J. M. Neto. 2017. Intertidal zonation and latitudinal gradients on macroalgal assemblages: species, functional groups and thallus morphology approaches. Ecological indicators 81: 90–103. https:// doi. org/ 10. 1016/j. ecoli nd. 2017. 05. 060
Guiry, M. D. 2012. How many species of algae are there? Journal of Phycology 48: 1057–1063. https:// doi. org/ 10. 1111/j. 1529- 8817. 2012.01222.x
Guiry, M. D. & G. M. Guiry. 2022. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org; searched on 16 de agosto de 2022.
Hiraoka, M., S. Shimada, M. Uenosono & M. Masuda. 2004. A new green-tide-forming alga, Ulva ohnoi Hiraoka et Shimada sp. nov. (Ulvales, Ulvophyceae) from Japan. Phycological Research 51: 17–29, http://dx.doi.org/10.1111/j.1440-1835.2004.tb00311.x
Hurd, C. L., P. J. Harrison, K. Bischof & C.S. Lobban. 2014. Seaweed ecology and physiology, 2nd ed. Cambridge University Press, Cambridge.
Instituto Nacional de Estadística y Geografía (INEGI). 2017. Anuario EstadÍstico
y Geográfico de Baja California Sur 2017. Instituto Nacional de Estadística
y Geografía, México. 412 p.
Kamer, K., K. A. Boyle & P. Fong. 2001. Macroalgal bloom dynamics in highly eutrophic Southern California Estuary . Estuaries 24 (4): 623–625.
Lapointe, E., P. J. Barile, C. S. Yentsch, M. M. Littler, D. S. Littler & B. Kakuk. 2004. The relative importance of nutrient enrichment and herbivory on macroalgal communities near Norman`s Pond Cay, Bahamas: a “natural” enrichment experiment. Journal of Experimental Marine Biology and Ecology 298: 275–301.
Lapointe, B. & B. J. Bedford. 2007. Drift rhodophyte blooms emerge in Lee County Florida USA: evidence of escalating coastal eutrophication. Harmful Algae 6: 421–437.
Lotze, H. K. & W. Schramm. 2000. Ecophysiological traits explain species dominance patterns in macroalgal blooms. Journal of Phycology 36: 287–295.
Liu, D., J. K. Keesing, P. He, Z. Wang, Y. Shi, & Y. Wang. 2013. The world's largest macroalgal bloom in the Yellow Sea, China: formation and implications. Estuarine, Coastal and Shelf Science129: 2–10.
Martins, G. M., R. F. Patarra, N. V. Álvaro, A. C. L. Prestes, & A. I. Neto. 2013. Effects of coastal orientation and depth on the distribution of subtidal benthic assemblages. Marine Ecology 34: 289–297.
McGlathery, K. J. 2001. Macroalgal blooms contribute to decline of seagrass in nutrient-enriched coastal waters. Journal of Phycology 37: 453–456.
Merceron, M., V. Antoine, I. Auby & P. Morand. 2007. In situ growth potential of the subtidal part of green tide forming Ulva spp. stocks. Science of the Total Environment 384 (1-3): 293–305.
Morand, P. & X. Briand. 1996. Excessive growth of macroalgae: a symptom of environmental disturbance. Botanica Marina 39: 491–516.
Morand, P. & M. Merceron. 2005. Macroalgal population and sustainability. Journal of Coastal Research 21(5): 1009–1020.
Nelson, T. A., K. Haberlin, A. V. Nelson, H. Ribarich, R. Hotchkiss, K. L. V. Alstyne, , ... & K. Fredrickson. 2008. Ecological and physiological controls of species composition in green macroalgal blooms. Ecology 89 (5): 1287–1298.
Núñez-López, R. A. & M. M. Casas-Valdez. 1998. Seasonal Variation of seaweed biomasa in San Ignacio Lagoon, Baja California Sur, México. Botanica Marina 41: 421–426.
Obeso-Nieblas, M. 2003. Variabilidad espacio-temporal de las condiciones oceanográficas de la Bahía de La Paz, BCS, México. Tesis de Doctorado en Ciencias Marinas, Centro Interdisciplinario de Ciencias Marinas-IPN, La Paz, Baja California Sur. 337 p.
Ochoa-Izaguirre, M. J. 1999. Composición y distribución de macroalgas en el sistema lagunas de Urías (Mazatlán, Sinaloa, México): Variación estacional de la biomasa en relación con la disponibilidad de nutrientes y algunos factores ambientales. Tesis de Maestría. ICMyL, UNAM, Mazatlán, Sinaloa, México. 99 p.
Ochoa-Izaguirre, M. J., J. J. Carballo & F. Paéz-Osuna. 2002. Qualitative changes in macroalgal assemblages under two contrasting climatic conditions in a subtropical estuary. Botanica Marina 45: 130–138.
O'Doherty, D. C. & A. R. Sherwood. 2007. Genetic Population Structure of the Hawaiian Alien Invasive Seaweed Acanthophora spicifera (Rhodophyta) as Revealed by DNA Sequencing and ISSR Analyses. Pacific Science 61(2): 223–233.
O'Neill, K., M. Schreider, L. McArthur & S. Schreider. 2015. Changes in the water quality characteristics during a macroalgal bloom in a coastal lagoon. Ocean & Coastal Management 118: 32–36.
Pedersen, M. F. & J. Borum. 1997. Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and uptake. Marine Ecology Progress Series 161: 155–163.
Pérez-Estrada, C. J., R. Rodríguez-Estrella, D. S. Palacios-Salgado & D. A. Paz-García. 2013. Initial spread of the invasive green alga Caulerpa verticillata over coral reef communities in the Gulf of California. Coral Reefs 32 (3): 865–865.
Pihl, L., A. Svenson, P. O. Moksnes & H. Wennhage. 1999. Distribution of green algal mats throughout shallow soft bottoms of the Swedish Skagerrak archipelago in relation to nutrient sources and wave exposure. Journal of Sea Research 35: 169–180.
Piñón-Gimate, A., E. Serviere-Zaragoza, M. J. Ochoa-Izaguirre & F. Páez-Osuna. 2008. Species composition and seasonal changes in macroalgal blooms in lagoons along the southeastern Gulf of California. Botanica Marina 51: 112–123.
Piñón-Gimate, A., F. Páez-Osuna, E. Serviere-Zaragoza & M. Casas-Valdez. 2012. Macroalgal blooms in coastal lagoons of the Gulf of California eco-region: a summary of current knowledge. Botanica Marina 55: 129–142.
Rosenberg, R., R. Elmgren, S. Fleischer, P. Jonsson, G. Persso & H. Dahlin. 1990. Marine eutrophication case studies in Sweden. Ambio 19: 102–108.
Russell, D.J. 1992. The ecological invasion of Hawaiian reefs by two marine red algae, Acanthophora spicifera (Vahl) Bøerg. and Hypnea musciformis (Wulfen) J. Ag., and their association with two native species, Laurencia nidifica and Hypnea cervicornis J. Ag. ICES Marine Science Symposium 194: 110–125.
Sangil, C., M. Sansón, S. Clemente, J. Afonso-Carrillo & J. C. Hernández. 2014. Contrasting the species abundance, species density and diversity of seaweed assemblages in alternative states: urchin density as a driver of biotic homogenization. Journal of Sea Research 85: 92–103.
Sangil, C., G. M. Martins, J. C. Hernández, F. Alves, A. l. Neto, C. Ribeiro,… et al. 2018. Shallow subtidal macroalgae in the North-eastern Atlantic archipelagos (Macaronesian region): a spatial approach to community structure. European Journal of Phycology 53 (1): 83–98. https:// doi. org/ 10. 1080/ 09670 262. 2017. 13850 98
Scanlan, C. M., J. Foden, E. Wells & M. A. Best. 2007. The monitoring of opportunistic macroalgal blooms. Marine Pollution Bulletin 55 (1-6): 162–171.
Schnoller, V. G. 2011. Variación especial y datos reproductivos de Acantophora spicifera (Ceramiales:Rhodophyta) en la playa Punta Roca Caimancito de la Bahía de La Paz, Baja California Sur, México. Tesis de Licenciatura. Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, México. 56 p.
Scrosati, R. 2001. Population dynamics of Caulerpa sertularioides (Chlorophyta: Bryopsidales) from Baja California, Mexico, during El Niño and La Niña years. Journal of the Marine Biological Association of the United Kingdom 81 (5): 721–726.
Setchell, W. A., & Gardner, N. L. (1924). New marine algae from the Gulf of California (Vol. 12).
Sfriso, A. & A. Marcomini. 1997. Macrophyte production in a shallow coastal lagoon. Part I: coupling with chemico-physical parameters and nutrient concentrations in waters. Marine Environmental Research 44: 351–375.
Strickland J. D. H. & T. R. Parsons. 1972. A Practical Handbook of Seawater Analysis. 311p.
Valiela, I., J. McClelland, J. Hauxwell, P. Behr, D. Hersh & K. Formean. 1997. Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnology and Oceanography 42: 1105–1118.
Vélez-Rubio, G. M., L. González-Etchebehere, F. Scarabino, R. Trinchin, G. Manta, M. Laporta, ... & C. Kruk. 2021. Macroalgae morpho-functional groups in Southern marine ecosystems: rocky intertidal in the Southwestern Atlantic (33°–35° S). Marine Biology 168 (10): 1–21.
Zar, J. H. 1984. Biostatistical analysis. 2nd ed. Prentice Hall, Inc., Englewood Cliffs, NJ. 718 p.

Publicado

2022-12-13

Como Citar

Piñón-Gimate, A., Serviere Zaragoza, E., Chávez-Sánchez, T., & Casas-Valdez, M. (2022). Macroalgae blooms, composition, abundance, and their relationship with environmental variables at a subtropical bay of the Gulf of California. HIDROBIOLÓGICA, 32(3). Recuperado de https://hidrobiologica.izt.uam.mx/hidrobiologica/index.php/revHidro/article/view/1659

Edição

Seção

Artículos