Diversity of archaea in tropical and subtropical estuarine-lagoon ecosystems. A synthesis

Archaea in tropical coastal ecosystems

Autores

  • María del Rocío Torres Alvarado Universidad Autónoma Metropolitana Iztapalapa

DOI:

https://doi.org/10.24275/uam/izt/dcbs/hidro/2022v32n2/Torres

Palavras-chave:

archaea biodeversity, coastal ecosystems, tropical and subtropical zones

Resumo

Background. Tropical and subtropical estuarine ecosystems are among the most productive ecosystems on the planet, their seasonal fluctuations, their permanent or ephemeral connection with the ocean and freshwater discharges, generate a high biodiversity that provides numerous ecosystem services. In these ecosystems, biodiversity research has focused on macro-organisms and less attention has been paid to prokaryotes, particularly the archaea group. Goal. Based on a bibliographic review of the Archaea Domain in estuaries, coastal lagoons and mangroves located in tropical and subtropical zones, to provide a synthesis of the factors that influence the presence and distribution of archaea in these ecosystems and the role they play in biogeochemical cycles. Methods. A search was made of the articles published with the keywords Archaea + tropical coastal ecosystems and Archaea + subtropical coastal ecosystems. Results. The analysis of the environmental sequences obtained, from molecular techniques, in studies of the diversity of prokaryotes in coastal lagoons, estuaries and tropical and subtropical mangroves, have revealed a high diversity of archaea belonging mainly to methanogens and anaerobic methanotrophs (Phyla Euryarchaeota), ammonium oxidizing archaea (Thaumarchaeota) and representatives of the Superphyllum Asgard. These groups can potentially participate in the carbon, nitrogen, and sulfur cycles, in aerobic or anaerobic conditions, with heterotrophic or autotrophic metabolisms, and their abundance and distribution are related to the physicochemical conditions of the ecosystems. Conclusions. The diversity of Archaea in tropical and subtropical coastal ecosystems is greater than previously recorded. These microorganisms play a vital role in various biogeochemical cycles as well as climate change.

Downloads

Não há dados estatísticos.

Referências

Abell, G. C. J., A. T. Revil, C. Smith, A. P. Bissett,J. K. Volkman & S. S. Robert. 2010. Archaeal ammonia oxiders and niS-type denitrifiers dominate sediment nitrifying and denitrifying populations in a subtropical macrotidal estuary. ISME Journal 4:286-300.

Adam, P. S., G. Borrel, C. Brochier-Armanet & S.Gribaldo. 2017. The growing tree of Archaea: new perspectives on their diversity, evolution, and ecology. ISME Journal 11: 2407–2425. DOI:10.1038/ismej.2017.122

Baker, B. J., L. R. Comolli, G. J. Dick, L. J. Hauser, D. Hyatt, B. D. Dill, M. L. Land, N. C. VerBerkmoes, R. L. Hettichd & J. F. Banfield. 2010. Enigmatic, ultrasmall, uncultivated Archaea. Proceedings of the National Academy of Sciences of the United States of America 107: 8806-8811. DOI:10.1073/pnas.0914470107

Baker, B. J., V. De Anda, K. W. Seitz, N. Dombrowski, A. E. Santoro & K. G. Lloyd. 2020. Diversity, ecology, and evolution of Archaea. Nature Microbiology 5: 887–900. DOI:10.1038/s41564-020-0715-z

Barnes, R. S. K. 2001. Lagoons. Encyclopedia of Ocean Sciences, Academic Press, U.K, 12 p. DOI:10.1006/rwos.2001.0091

Bhattacharyya, A., S. N. Majumder, P. Basak, S. Mukherji, D. Roy, S. Nag, A. Haldar, D. Chattopadhyay, S. Mitra, M. Bhattacharyya & A. Ghosh. 2015. Diversity and distribution of Archaea in the mangrove sediment of Sundarbans. Archaea 968582:14. DOI:10.1155/2015/968582

Beman, J. M. 2014. Activity, abundance, and diversity of nitrifying archaea and denitrifying bacteria in sediments of a subtropical estuary: Bahía del Tóbari, Mexico. Estuaries and Coasts 37: 1343-1352

Bergey's Manual of Systematic Bacteriology: Volume one: the Archaea and the deeply branching and phototrophic bacteria. 2012. GM Garrity - Editor in Chief-. David R. Boone and Richard W. Castenholz -Editors- 169-358

Blair, N. E. & R. C. Aller. 1995. Anaerobic methane oxidation on the Amazon shelf. Geochimica et Cosmochimica Acta 59:3707-3715. DOI:10.1016/0016-7037(95)00277-7

Böttcher, M. E., B. Hespenheide, E.Llobet-Brossa, C. Beardsley, O.Larse, A. Schramm, A. Wieland, G. Böttcher, U. G. Berninger& R. Amann. 2000. The biogeochemistry, stable isotope geochemistry, and microbial community structure of a temperate intertidal mudflat: an integrated study. Continental Shelf Research 20: 1749-1769. DOI:10.1016/S0278-4343(00)00046-7

Cadena, S., M. Aguirre-Macedo, D. Cerqueda-García, F. Cervantes, J. Silveira & J. García-Maldonado. 2019. Community structure and distribution of benthic Bacteria and Archaea in a stratified coastal lagoon in the Southern Gulf of Mexico. Estuarine, Coastal and Shelf Science 230:106433. DOI: 10.1016/j.ecss.2019.106433

Caffrey, J. M., N. Bano, K. Kalanetra & Hollibaugh. 2007. Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia. ISME Journal1: 660-662. DOI:10.1038/ismej.2007.79

Cai, M., Y. Liu, X. Yin, Z. Zhou, M. W. Friedrich, T. Richter-Heitmann, R. Nimzyk, A. Kulkarni, X. Wang, W. Li, J. Pan, Y. Yang, J. D. Gu& M. Li. 2020. Diverse Asgard archaea including the novel phylum Gerdarchaeota participate in organic matter degradation. SCIENCE CHINA Life Sciences 63:886–897. DOI:10.1007/s11427-020-1679-1

Canfield, D. E., E. Kristensen & B. Thamdrup. 2005. The methane cycle. In: Southward, A., P. A. Tyler, C. M. Young & L. A. Fuiman (eds.). Advances in Marine Biology Aquatic Geomicrobiology. Elsevier Inc. United Kingdom, pp. 383-418.

Carini, S. A., B. N. Orcutt&J. B. Samantha. 2003. Interactions between methane oxidation and nitrification in coastal sediments. Geomicrobiology Journal 20: 355-374. DOI:10.1080/01490450303900

Castelle, C. J., K. C. Wrighton, B. C. Thomas, L. A. Hug, C. T. Brown, M. J. Wilkins, K. R. Frischkorn, S. G.Tringe, A. Singh, L. M. Markillie, R. C. Taylor, K. H. Williams & J. F. Banfield. 2015. Genomic expansion of Domain Archaea highlights roles for organisms from New Phyla in anaerobic carbon cycling. Current Biology 25: 690-701. DOI: 10.1016/j.cub.2015.01.014.

Cloern, J. E., S. Q. Foster & A. E. Kleckner. 2014.Phytoplankton primary production in the world's estuarine-coastal ecosystems. Biogeosciences 11: 2477–2501. DOI:10.5194/bg-11-2477-2014

Corredor, J. E., R. W. Howarth, R. R. Twilley & J. M. Morell. 1999. Nitrogen cycling and anthropogenic impact in the tropical interamerican seas. Biogeochemistry 46: 163-178.

Cortés-López, N. G., P. L. Ordoñez-Baquera & J. Domínguez-Viveros. 2020. Herramientas moleculares utilizadas para el análisis metagenómico. Revisión. Revista Mexicana de Ciencias Pecuarias 11(4): 1150-1173. DOI:10.22319/rmcp. v11i4.5202

Danovaro, R. & A. Pusceddu. 2007. Biodiversity and Ecosystem Functioning in Coastal Lagoons: Does Microbial diversity Play Any Role? Estuarine, Coastal and Shelf Science 75: 4-12.DOI: 10.1016/j.ecss.2007.02.030

De Wit, R., L. J. Stal, B. A. Lomstein, R. A. Herbet, H. V. Gemerden, P. Viaroli, V. U. Cecherelli, F. Rodríguez-Valera, B. Schaub, B. Bartoli, D. Welsh, A. Donelly, A. Cienfuentes, A. Antón, K. Finster, L. B. Nielsen, A. G. U. Pedersen, A. T. Neubeurer, M. A. Colangelo& S. K. Heijs. 2001. ROBUST: the role of buffering capacities in stabilizing coastal lagoon ecosystems. Continental Shelf Research 21: 2021-2041. DOI:10.1016/S0278-4343(01)00040-1

Esteves, F. A., A. Caliman, J. M. Santangelo, R. D. Guariento, V. F. Farjalla & R. L. Bozelli. 2008. Neotropical Coastal Lagoons: An appraisal of their biodiversity, functioning, threats, and conservation management. Brazilian Journal of Biology 68: 967-981. DOI:10.1590/S1519-69842008000500006

Euler, S., L. C. Jeffrey, D. T. Maher, D.Mackenzie & D. R. Tait. 2020. Shifts in methanogenic archaea communities and methane dynamics along a subtropical estuarine land use gradient. PLoS ONE 15(11): e0242339. DOI: 10.1371/journal.pone.0242339

Evans, P. N., D. H. Parks, G. L. Chadwick, S. J. Robbins, V. J. Orphan, S. D. Golding& G. W. Tyson. 2015. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350: 434-438.DOI: 10.1126/science.aac7745

Firrincieli, A., A. Negroni, G. Zanaroli & M. Cappelletti. 2021.Unraveling the Metabolic Potential of Asgardarchaeota in a Sediment from the Mediterranean Hydrocarbon-Contaminated Water Basin Mar Piccolo (Taranto, Italy). Microorganisms 9(4): 859. DOI:10.3390/microorganisms9040859

Francis, C. A., J. M. Beman & M. M. M. Kuypers. 2007. New processes and players in the nitrogen cycle: The microbial ecology of anaerobic and archaeal ammonia oxidation. ISME Journal 1:19-27. DOI:10.1038/ismej.2007.8

Fukui, M., J. Suh, Y. Yonezawa & Y. Urushigawa. 1997. Major substrates for microbial sulfate reduction in the sediments of Ise Bay, Japan. Ecological Research 12: 201-209. DOI:10.1007/BF02523785

Gribaldo, S. & C. Brochier-Armane. 2006. The origin and evolution of Archaea: a state of the art. Philosophical Transactions of the Royal Society B 361: 1007–1022

DOI 10.1098/rstb.2006.1841

Guy, L.& T. J.G. Ettema. 2011. The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends in Microbiology 19: 580-587. DOI: 10.1016/j.tim.2011.09.002

Harris, G. 2008. Lagoons. Encyclopedia of Ecology2: 539-545. DOI:10.1016/B978-0-444-63768-0.00344-9

Hernández De Lira, I. O., D. H. Huber, M. P. Luevanos-Escareño, F. Hernández-Terán, J. Sáenz Mata & N.Balagurusamy. 2014. Metagenómica: Concepto y Aplicaciones en el Mundo Microbiano. En: Universidad Autónoma de Coahuila(Ed.). Fronteras en Microbiología Aplicada, pp. 154-175. http://www.investigacionyposgrado.uadec.mx/site/wp-content/uploads/2020/10/3.-2014Fronteras-en-microbiologia.pdf

Higgins, I. J., D. J. Best, R. C. Hammond& D. Scott. 1981. Methane-oxidizing microorganisms. Microbiological Reviews 45:556-590. DOI:10.1128/mr.45.4.556-590.1981

Holguin, G., P. Vázquez & Y. Bashan. 2001. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems; an overview. Biology Fertility Soils33: 265-278

Howarth, R. W. 1993. Microbial processes in salt-marsh sediments. In: T. E. Ford (Ed.). Aquatic Microbiology. Blackwell Scientific Publications, Boston, pp. 239-260.

Howarth, R., F. Chan, D. J. Conley, J. Garnier, S. C. Doney, R. Marino & G. Billen. 2011. Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Frontiers in Ecology and the Environment 9: 18-26. DOI:10.1890/100008

Hu, A., H. Wang, J. Li, J. Liu, N. Chen & C-P. Yu. 2016. Archaeal community in a human-disturbed watershed in southeast China: diversity, distribution, and responses to environmental changes. Applied Microbiology and Biotechnology 100: 4685–4698. DOI:10.1007/s00253-016-7318-

Huber, H., M. Hohn, R. Rachel, T. Fuchs, V. C. Wimmer & K. O. Stetter. 2002. A new phylum of Archaea represented by a nanosized hyper thermophilic symbiont. Nature417: 63–67. DOI:10.1038/417063a

Hugoni, M., H. Agogué, N. Taib, I.Domaizon, A.Moné, P. E. Galand, G. Bronner, D. Debroas & I. Mary. 2015. Temporal dynamics of active prokaryotic nitrifiers and Archaeal communities from river to sea. Microbial Ecology 70:473–483. DOI:10.1007/s00248-015-0601-z

Jiang, L., Y. Zheng, J. Chen, X. Xiao& F. Wang. 2011. Stratification of Archaeal communities in shallow sediments of the Pearl River Estuary, Southern China. Antonie van Leeuwenhoek 99: 739–751. DOI:10.1007/s10482-011-9548-3

Jing, H., S. Cheung, Z. Zhou, C. Wu, S. Nagarajan& H. Liu. 2016. Spatial variations of the methanogenic communities in the sediments of tropical mangroves. PLoS ONE 11(9): e0161065. DOI: 10.1371/journal.pone.0161065

Karl, D. M. & B. D. Tilbrook. 1994. Production and transport of methane in oceanic particulate organic matter. Nature368: 732-734. DOI:10.1038/368732a0

Khandeparker, L., N. Kuchi, D. Kale & A. C. Anil. 2017. Microbial community of surface sediments from a tropical estuarine environment using next generation sequencing. Ecological Indicators 74: 172-181. DOI: 10.1016/j.ecolind.2016.11.023

Knoppers, B.1994. Aquatic primary production in coastal lagoons. In: B. Kjerfve (Ed.). Coastal Lagoon Processes. Amsterdam. The Netherlands. Elsevier Oceanography Series, pp. 243-285. DOI:10.1016/S0422-9894(08)70014-X

Kreuzwieser, J., J. Buchholz & H. Rennenberg. 2003. Emission of methane and nitrous oxide by Australian mangrove ecosystems. Plant Biology 5: 423-443. DOI: 10.1055/s-2003-42712

Kubo, K., K. G. Lloyd, F. J. Biddle, R. Amann, A. Teske & K. Knittel. 2012. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse, and widespread in marine sediments. ISME Journal 6: 1949-1965. DOI:10.1038/ismej.2012.37

Lazar, C. S., B. J. Baker, K. Seitz, A. S. Hyde, G. J. Dick, K-W. Hinrichs & A. P. Teske. 2016. Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Environmental Microbiology 18: 1200-1211. DOI:10.1111/1462-2920.13142

Lazar, C. S., B. J. Baker, K. W. Seitz& A. P. Teske. 2017. Genomic reconstruction of multiple lineages of unculture’s benthic archaea suggests distinct biogeochemical roles and ecological niches. ISME Journal 11: 1058. DOI:10.1038/ismej.2016.189

Li, J., D. B. Nedwell, J. Beddow, A, J, Dumbrell, B. A. McKew, E. L. Thorpe & C. Whitby. 2015. amoA Gene abundances and nitrification potential rates suggest that Benthic Ammonia-Oxidizing Bacteria and not Archaea dominate N Cycling in the Colne Estuary, United Kingdom. Applied and Environmental Microbiology 81: 159-165. DOI:10.1128/AEM.02654-14

Lidstrom, M. E. 2001. Aerobic methylotrophic prokaryotes. In: Dworkin, M., A. Balows, H. G. Trüper, W. Harder & K. H. Schleifer (Eds.). The Prokaryotes. Springer, New York, United States of America, pp. 37-45.

Liu, Y., L. L. Beer & W. B. Whitman. 2012. Sulfur metabolism in archaea reveals novel processes. Environmental Microbiology 14: 2632–2644. DOI:10.1111/j.1462-2920.2012. 02783.x

Liu, J., H. Yang, M. Zhao & X. H. Zhang. 2014. Spatial distribution patterns of benthic microbial communities along the Pearl Estuary, China. Systematics Applied Microbiology 37: 578-589. DOI: 10.1016/j.syapm.2014.10.005

Liu, X., J. Pan, Y. Liu, M. Li& J. D. Gu. 2018 a. Diversity and distribution of Archaea in global estuarine ecosystems. Science of the Total Environment 349-358. DOI: 10.1016/j.scitotenv.2018.05.016

Liu, Y., Z. Zhou, J. Pan, B. J. Baker, J-D.Gu & M. Li. 2018 b. Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota. ISME Journal12:1021–1031. DOI:10.1038/s41396-018-0060-x

Lyimo, T. J., A. Pol, H. J. M. Op den Champ, H. R. Harhangi & G. D. Vogels. 2000. Methanosarcina semesiae sp. nov., a dimethylsulfide-utilizing methanogen from mangrove sediment. International Journal of Systematic and Evolutionary Microbiology50:171-178. DOI: https:10.1099/00207713-50-1-171

Lyimo, T. J., A. Pol & J. H. M. Op den Champ. 2002. Sulfate reduction and methanogenesis in sediments of Mtoni mangrove forest, Tanzania. Ambio 31: 614-616. DOI: 10.1099/00207713-50-1-171

Lyimo, T. J., A, Pol, J. S. M. Mike & H. J. M. Op den Camp. 2009. Diversity of methanogenic archaea in a mangrove sediment and isolation of a new Methanococcoides strain. FEMS Microbiology Letters 291: 247-253. DOI: 10.1111/j.1574-6968. 01464.x

MacLeod, F., K. S. Gareth, W. H. Lun, C. Ray & B. P. Brendan. 2019. Asgard archaea: Diversity, function, and evolutionary implications in a range of microbiomes. AIMS Microbiology 5(1): 48-61. DOI:10.3934/microbiol.2019.1.48

Manoharan, L., J. A. Kozlowski, R. W. Murdoch, F. E.Löffler, F. L. Sousa& C. Schleper. 2019. Metagenomes from coastal marine sediments give insights into the ecological role and cellular features of Loki- and Thorarchaeota. mBio10: e02039-19. DOI:10.1128/mBio.02039-19.

Offre, P., A. Spang, C. Schleper. 2013. Archaea in biogeochemical cycles. Annual Review of Microbiology 67:43. DOI:10.1146/annurev-micro-092412-155614-45.

Orphan, V. J., C. H. House, K-U. Hinrichs, K. D. McKeegan & E. F. DeLong. 2001. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293: 484-487. DOI:10.1126/science.1061338

Pérez-Ruzafa, A., C. Marcos, I. M. Pérez-Ruzafa & M. Pérez-Marcos. 2011. Coastal lagoons: “transitional ecosystems” between transitional and coastal waters. Journal of Coastal Conservation 15:369–392. DOI:10.1007/s11852-010-0095-2

Pérez-Ruzafa, A., I. M. Pérez-Ruzafa, A. Newton& C. Marcos. 2019. Coastal Lagoons: Environmental Variability, Ecosystem Complexity, and Goods and Services Uniformity. Coasts and Estuaries, the Future15:253-276.

Perillo, G. M. E. 1995. Definition and geomorpholy classifications of estuaries. In: G. M. E. Perillo (eds.). Geomorpholy and Sedimentology of Estuaries. Vol. 53. Elsevier Science. Amsterdam, pp. 17-47. DOI:10.1016/S0070-4571(05)80022-6

Petitjean, C., P. Deschamps, P. López-García & D. Moreira. 2015. Rooting the Domain Archaea by phylogenomic analysis supports the foundation of the New Kingdom Proteoarchaeota. Genome Biology and Evolution 7: 191–204. DOI:10.1093/gbe/evu274

Purdy, K. J., M. A. Munson, D. B. Nedwell & T. M. Embley. 2002. Comparison of the molecular diversity of the methanogenic community at the brackish and marine sediments of UK estuary. FEMS Microbiology Ecology 39: 17-21. DOI:10.1111/j.1574-6941. 2002.tb00902.x

Purdy, K. J., D. B. Nedwell, T. M. Embley & S.Takii. 2001. Use of 16S rRNA-targeted oligonucleotide probes to investigate the distribution of sulphate-reducing bacteria in estuarine sediments. FEMS Microbiology Ecology 36: 165-168. DOI:10.1111/j.1574-6941. 2001.tb00836.x

Purvaja, R., R. Ramesh & P. Frenzel. 2004. Plant-mediated methane emission from an Indian mangrove. Global Change Biology 10:1825-1834. DOI:10.1111/j.1365-2486.2004. 00834.x

Rinke, C., P. Schwientek, A. Sczyrba, N. N. Ivanova, I. J. Anderson, J-F Cheng, J-F., A. Darling, S. Malfatti, B. K. Swan, E. A. Gies, J. A. Dodsworth, B. P. Hedlund, G. Tsiamis, S. M. Sievert, W-T. Liu, J. A. Eisen, S. J. Hallam, N. C. Kyrpides, R. Stepanauskas, E. M. Rubin, P. Hugenholtz & T. Woyke. 2013. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499: 431–437. DOI:10.1038/nature12352

Rinke, C., F. Rubino, L. F. Messer, N. Youssef, D. H. Parks, M. Chuvochina, M. Brown, J. Jeffries, G. W. Tyson, J. R. Seymour & P. Hugenholtz. 2019. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidonales ord. nov.) ISME Journal 13: 663-675. DOI:10.1038/s41396-018-0282-y

Saia, F., M. Domingues, V.Pellizari & R. Vazoller. 2010. Occurrence of methanogenic Archaea in highly polluted sediments of Tropical Santos–São Vicente Estuary (São Paulo, Brazil). Current Microbiology 60:66–70. DOI:10.1007/s00284-009-9503-y

Santoro, A. E., C. Buchwald, M. R. McIlvin & K. L. Casciotti. 2011. Isotopic signature of N2O produced by marine ammonia-oxidizing Archaea. Science 333: 1282-1285. DOI:10.1126/science.1208239

Seitz, K. E., C. S. Lazar, K-U. Hinrichs, A. P. Teske & B. J. Baker. 2016. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. The ISME Journal 10: 1696–1705

Seitz, K. W., N. Dombrowski, L. Eme, A. Spang, J. Lombard, J. R. Sieber, A. P. Teske, T. J. G. Ettema & B. J. Baker. 2019. Asgard archaea capable of anaerobic hydrocarbon cycling. Nature Communications 10: 1822. DOI:10.1038/s41467-019-09364-x

Silveira, C. B., A. M. Cardoso, F. H. Coutinho, J. L. Lima, L. H. Pinto, R. M. Albano, M. M. Clementino, O. B. Martins & R. P.Vieira. 2013. Tropical aquatic archaea show environment-specific community composition. PLoS ONE 8(9): e76321. DOI: 10.1371/journal.pone.0076321

Sousa, F., S. Neukirchen, J. Allen, N. Lane& W. F. Martin. 2016. Lokiarchaeon is hydrogen dependent. Nature Microbiology 1: 16034. DOI:10.1038/nmicrobiol.2016.34

Taketai, G. T. R., C. A. Yoshiura, C. A. Franco Dias, F. D. Andreote & S. M. Tsai. 2010. Diversity and identification of methanogenic archaea and sulphate-reducing bacteria in sediments from a pristine tropical mangrove. Antonie van Leeuwenhoek 97: 401-411. DOI:10.1007/s10482-010-9422-8

Takii, S. &M. Fukui. 1991. Relative importance of methanogenesis, sulfate reduction and denitrification in sediments of the lower Tama river. Bulletin of Japanese Society Microbial Ecology 6: 1-8. DOI:10.1264/microbes1986.6.9

Thauer, R., A. K. Kaster, H. Seedorf, W. Buckel & R. Hedderich. 2008. Methanogenic archaea: ecologically relevant differences in energy conservation. Nature Reviews Microbiology 6: 579–591. DOI:10.1038/nrmicro1931

Torres-Alvarado, M. R., F. J. Fernández, F. Ramírez Vives and F. Varona-Cordero. 2013. Dynamics of the Methanogenic Archaea in Tropical Estuarine Sediments. Archaea. Volume 2013. Special Issue "Archaea in Past and Present

Torres-Alvarado, M .R., L. G. Calva-Benítez, S. Álvarez-Hernández & G. Trejo-Aguilar. 2016. Anaerobic microbiota: spatial-temporal changes in the sediment of a tropical coastal lagoon with ephemeral inlet in the Gulf of Mexico. Revista de Biología Tropical/International Journal of Tropical Biology and Conservation.

Geobiochemical Processes and Elemental Cycles". 13 p. http://dx.doi.org/10.1155/2013/582646

Tully, B. J. 2019. Metabolic diversity within the globally abundant Marine Group II Euryarchaea offers insight into ecological patterns. Nature Communication10:271. DOI:10.1038/s41467-018-07840-4

Valenzuela, E., A. Prieto-Davó, N. E. López-Lozano, A. Hernández-Eligio, L. Vega-Alvarado, K. Juárez, A. S. García-González, M. G. López& F. J. Cervantes. 2017. Anaerobic methane oxidation driven by microbial reduction of natural organic matter in a tropical wetland. Applied and Environmental Microbiology83:e00645-17. DOI:10.1128/AEM.00645-17

Vieira, R. P., M. M. Clementino, A. M. Cardoso, D. N. Oliveira, R. M. Albano, A. M. Gonzalez, R. Paranhos & O. B. Martns. 2007. Archaeal communities in a tropical estuarine ecosystem: Guanabara Bay, Brazil. Microbial Ecology 54: 460-468. DOI:10.1007/s00248-007-9261-y

Vipindas, P. V., A. Abdulaziz, C. Jasmin, K. R. Lallu, K. H. Fausia, K. K. Balachandran, K. R. Muraleedharan & N. Shanta. 2015. Bacterial domination over Archaea in ammonia oxidation in a monsoon driven tropical estuary. Microbial Ecology 69(3): 544-553. DOI:10.1007/s00248-014-0519-x

Webster, G., L. A. O´Sullivan, Y. Meng, A. S. Wiliams, A. M. Sass, A. J. Watkins, R. J. Parkes & A. J. Weightman. 2015. Archaeal community diversity and abundance changes along a natural salinity gradient in estuarine sediments. FEMS Microbiology Ecology 91:1-18. DOI:10.1093/femsec/fiu025

Willig, M. R., D. M. Kaufman & R. D. Stevens. 2003. Latitudinal gradients of biodiversity: pattern., process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics 34: 273-309

Woese, C. R. & G. E. Fox. 1977. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proceedings of the National Academy of Sciences of the United States of America 74: 5088-5090. DOI:10.1073/pnas.74.11.5088

Woese, C. R., L. J. Magrum & G. E. Fox. 1978. Archaebacteria. Journal of Molecular Evolution 11: 245-51. DOI:10.1007/BF01734485.

Woese, C. R., O. Kandler & M. L. Wheelis. 1990 Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America 87, 4576–4579.

Xie, W., C. Zhang, X. Zhou& P. Wang. 2014. Salinity-dominated change in community structure and ecological function of Archaea from the lower Pearl River to coastal South China Sea. Applied Microbiology and Biotechnology 98:7971-7982. DOI:10.1007/s00253-014-5838-9

Yasawong, M., P. Kanjanavas, S. Areekit & K. Chansiri. 2013. Archaea biodiversity from Chol Buri mangrove forest, Thailand. International Scientific Journal Medical and Biological Sciences. http://bioscience.scientific-journal.com

Yu, T., W. Wu, W. Liang, M. A. Lever, K-W. Hinrichs & F. Wang. 2018. Growth of sedimentary Bathyarchaeota on lignin as an energy source. Proceedings of the National Academy of Sciences of the United States of America115:6022-6027. DOI:10.1073/pnas.1718854115

Zhang, C-J., J. Pan, C-H.Duan, Y-M. Wang, Y. Liu, J. Sun, H-C. Zhou, X. Song & M. Li. 2019. Prokaryotic diversity in mangrove sediments across southeastern China fundamentally differs from that in other biomes. mSystems4: e00442-19. DOI:10.1128/mSystems.00442-19.

Zhang, C-J., Y. L. Chen, Y. H. Sun, J. Pan, M-W. Cai & M. Li. 2021. Diversity, metabolism, and cultivation of archaea in mangrove ecosystems. Marine Life Science & Technology 3: 252–262. DOI:10.1007/s42995-020-00081-9

Zhou, Z., Y. Liu, K. G. Lloyd, J. Pa, Y. Yang, J-D. Gu & M. Li. 2019. Genomic and transcriptomic insights into the ecology and metabolism of benthic archaeal cosmopolitan, Thermoprofundales (MBG-D archaea). ISME Journal 13: 885–901. DOI:10.1038/s41396-018-0321-8

Zhou, Z., J. Pan, F. Wang, J-D. Gu, M. Li. 2018. Bathyarchaeota: globally distributed metabolic generalists in anoxic environments. FEMS Microbiology Reviews 42:639–55. DOI:10.1093/femsre/fuy023

Zou, Z., H. Meng, Y. Liu, J. D. Gu & M. Li. 2017. Stratified Bacterial and Archaeal community in mangrove and intertidal wetland mudflats revealed by High Throughput 16S rRNA Gene Sequencing. Frontiers in Microbiology 8: 2148. DOI:10.3389/fmicb.2017.02148

Zou, D., Y. Li, S. J. Kao, H. Liu & M. Li. 2019. Genomic adaptation to eutrophication of ammonia-oxidizing archaea in the Pearl River estuary. Environmental Microbiology 21: 2320-2332. DOI:10.1111/1462-2920.14613

Zou, D., H. Liu & M. Li. 2020. Community, distribution, and ecological roles of estuarine Archaea. Frontiers in Microbiology 11:2060. DOI:10.3389/fmicb.2020.02060

Publicado

2022-09-23

Como Citar

Torres Alvarado, M. del R. (2022). Diversity of archaea in tropical and subtropical estuarine-lagoon ecosystems. A synthesis: Archaea in tropical coastal ecosystems. HIDROBIOLÓGICA, 32(2). https://doi.org/10.24275/uam/izt/dcbs/hidro/2022v32n2/Torres

Edição

Seção

Artículos de Revisión

Artigos mais lidos pelo mesmo(s) autor(es)