Spatial and seasonal effects on physicochemical properties of native agar from Gracilaria parvispora (Rhodophyta) in the Tropical Mexican Pacific (Oaxaca-Chiapas)

Autores

  • María de Jesús Trejo Méndez Universidad del Mar
  • Gustavo Hernández Carmona Instituto Politécnico Nacional - CICIMAR
  • Dora Luz Arvizu Higuera Instituto Politécnico Nacional - CICIMAR
  • Edgar Francisco Rosas Alquicira Universidad del Mar
  • José Alberto Montoya Márquez Universidad del Mar
  • Yoloxochitl Elizabeth Rodríguez Montesinos Instituto Politécnico Nacional - CICIMAR
  • Mauricio Muñoz Ochoa Instituto Politécnico Nacional - CICIMAR

DOI:

https://doi.org/10.24275/uam/izt/dcbs/hidro/2021v31n2/Trejo

Palavras-chave:

3, 6-Anhydrogalactose, coastal lagoons, FTIR-ATR spectroscopy, seasonal variation, sulfate content

Resumo

Background: Gracilaria parvispora is an invasive red seaweed located in coastal lagoons along the Tropical Mexican Pacific. Gracilaria species are the main source of agar around the world. Goals: Spatial and seasonal trends of the properties of native agar from the invasive seaweed G. parvispora were determined in three localities in the states of Oaxaca and Chiapas belonging to coastal lagoons along the Tropical Mexican Pacific: Ballenato, Paredón, and San Vicente. Methods: Native agar was obtained from dry samples of seaweed and the agar yield, gel strength, melting and gelling temperatures, hysteresis, and sulfate and 3,6-anhydrogalactose content were determined for each sample. Moreover, the polysaccharide structures and the location of sulfate groups in agar samples were identified. Results: The phycocolloid is a polysaccharide agar type. The agar yield was significantly different between seasons and localities, with the highest values during the dry season (19.9 ± 0.004 %) at Paredón (20.6 ± 0.01 %). Gel strength, melting temperature and gel hysteresis showed significant spatial differences; the highest values were obtained in Ballenato (367.3 ± 14.2 g cm−2, 80.2 ± 1.4 °C, 44.3 ± 2.2 °C, respectively); gelling temperature did not show significant differences between localities or seasons. Chemical properties were significantly different between seasons: 3,6-anhydrogalactose content was higher during the dry season (36.2 ± 0.2 %), and sulfate content was higher during the rainy season (12.69 ± 0.21 %). Salinity was significantly different between seasons, and the highest was obtained during the dry season (38.7 ± 0.1). Surface water temperature varied between localities, and the highest mean value was recorded at Paredón (32.5 ± 0.2 °C). Conclusions: The chemical properties of the G. parvispora native agar were lower than the standards for food and industrial use.

Downloads

Não há dados estatísticos.

Referências

Abbott, I. A. 1985. Sección IV. Gracilaria. In: Abbott, I. A. & J. N. Norris (eds.) Taxonomy of Economic Seaweeds with Reference to Some Pacific and Caribbean Species. California Sea Grant College Program, La Jolla, CA, pp. 115156.

Armisén, R. 1995. World-wide use and importance of Gracilaria. Journal of Applied Phycology 7: 231243.

Armisén, R. & F. Galatas. 1987. Production, properties and uses of agar. In: McHugh, D. J. (ed.) Production and Utilization of Products from Commercial Seaweeds. FAO Fisheries Technical Paper 288. FAO, Rome, pp. 157.

Armisén, R. & F. Galatas. 2000. Agar. In: Phillips, G. and Williams, P. (eds.) Handbook of Hydrocolloids. CRC, Boca Raton, FL, pp. 2140.

Arvizu-Higuera, D. L., Y. E. Rodríguez-Montesinos, J. I. Murillo-Álvarez,M. Muñoz-Ochoa & G. Hernández-Carmona. 2008. Effect of alkali treatment time and extraction time on agar from Gracilaria vermiculophylla. Journal of Applied Phycology. 20: 515519.

Barros, F. C. N., D. C. da Silva, V. G. Sombra, J. S. Maciel, J. P. Feitosa, A. L Freitas & R. C. de Paula. 2013. Structural characterization of polysaccharide obtained from red seaweed Gracilaria caudata (J. Agardh). Carbohydrate Polymers 92(1): 598603.

Bird, K. T. 1988. Agar production and quality from Gracilaria sp. strain G-16: effects of environment factors. Botanica Marina 31: 3339.

Buriyo, A. S. & A. K. Kivaisi. 2003. Standing stock, agar yield and properties of Gracilaria salicornia harvested along the Tanzanian coast. Western Indian Ocean Journal of Marine Science 2: 171178.

Callaway, E. 2015. Lab staple agar runs low, dwindling seaweed harvest imperils reagent essential for culturing microbes. Nature 528: 171172.

Camacho, O & G. Hernández-Carmona. 2012. Fenología y alginatos de dos especies de Sargassum de la costa Caribe de Colombia. Ciencias Marinas 38(2): 381393.

Contreras, F., O. Castañeda, & R. Torres. 1997. Hidrología, nutrientes y productividad primaria en lagunas costeras del estado de Oaxaca, México. Hidrobiológica 7: 912.

Dobson, A. J. 2002. An Introduction to Generalized Linear Models. Chapman & Hall/CRC, New York. 255 p.

Dreckmann, K. M. 1999. El género Gracilaria (Rhodophyta) en el Pacífico Centro-Sur de México. I. Gracilaria parvispora I.A. Abbott. Hidrobiológica 9(1): 7176.

Freile-Pelegrín, Y. & E. Murano. 2005. Agars from three species of Gracilaria (Rhodophyta) from Yucatán Peninsula. Bioresource Technolonogy 96: 295302.

Freile-Pelegrín, Y. & D. Robledo. 1997a. Effects of season on the agar content and chemical characteristics of Gracilaria cornea from Yucatan, Mexico. Botanica Marina 40: 285290.

Freile-Pelegrín, Y. & D. Robledo. 1997b. Influence of alkali treatment on agar from Gracilaria cornea from Yucatan, Mexico. Journal of Applied Phycology 9: 5339.

García-Rodríguez, L. D., R. Ríosmena-Rodríguez, S. Y. Kim, M. López-Meyer, J. Orduña-Rojas, J.M. López-Vivas & M. Boo. 2013. Recent introduction of Gracilaria parvispora (Gracilariales, Rhodophyta) in Baja California, Mexico. Botanica Marina 56(2): 143150.

Gómez-Ordóñez, E. & P. Rupérez. 2011. FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocolloids 25: 15141520.

Guerrero, P., A. Etxabide, I. Leceta, M. Peñalba & K. de la Caba. 2014. Extraction of agar from Gelidium sesquipedale (Rhodopyta) and surface characterization of agar based films. Carbohydrate Polymers 99: 491498.

Hair, J. F., R. E. Anderson, R. L. Tatham & W. C. Black. 1999. Análisis Multivariante. Prentice Hall, Madrid. 799 p.

Heydari, M., M. A. Nematollahi, A. Motamedzadegan, S. Hashem & S. V. Hosseini. 2014. Optimization of the yield and quality of agar from Gracilariopsis persica. Bulletin of Environmental, Pharmacology and Life Sciences 3(3): 3340.

Hung, L. D., H. Q. Nang & N. Q. Buu. 2000. Chemical composition of sulfated galactans agar from some Gracilaria species growing along the coast of southern Vietnam. Journal of Chemistry 38: 8083.

John, D. M. & S. O. Asare. 1975. A preliminary study of the variations in yield and properties of phycocolloids from Ghanaian seaweeds. Marine Biology 30: 325330.

Lahaye, M. & W. Yaphe. 1988. Effects of seasons on the chemical structure and gel strength of Gracilaria pseudo-verrucosa agar (Gracilariaceae, Rhodophyta). Carbohydrate Polymers 8: 285301.

Lee, W. K., P. E. Lim, S. M Phang, P. Namasivayam & C. L. Ho. 2016. Agar properties of Gracilaria species (Gracilariaceae, Rhodophyta) collected from different natural habitats in Malaysia. Regional Studies in Marine Science 7: 123128.

León-Tejera, H. & J. González-González. 2000. Macroalgal communities from Laguna Superior, Oaxaca. In: Munawar, M., S. G. Lawrence, I. F. Munawar & D. F. Malley (eds.) Aquatic Ecosystems of Mexico. Status and Scope. Backhuys Publishers, Leiden, pp. 323334.

Marinho-Soriano, E., T. S, Silva & W. S. C. Moreira. 2001. Seasonal variation in the biomass and agar yield from Gracilaria cervicornis and Hydropuntia cornea from Brazil. Bioresource Technology 77: 115120.

Mateo-Cid, L. E. & A. C. Mendoza-González. 2012. Algas marinas bentónicas de la costa noroccidental de Guerrero, México. Revista Mexicana de Biodiversidad 83: 905928.

Matsuhiro, B. 1996. Vibrational spectroscopy of seaweed galactans. Hydrobiologia 326(1): 481489.

Mazumder, S., P. K. Ghosal, C. A. Pujol, J. Carlucci, B. Damonte & B. Ray. 2002. Isolation, chemical investigation and antiviral activity of polysaccharides from Gracilaria corticata (Gracilariaceae, Rhodophyta). International Journal of Biological Macromolecules 31: 8795.

McHugh, D. J. 2002. Prospects for Seaweed Production in Developing Countries. FAO Fisheries Circulars. No. 968. FAO, Rome.

McHugh, D. J. 2003. A Guide to the Seaweed Industry. FAO Fisheries Technical Paper No. 441. FAO, Rome.

Mendoza-González, C. A. & L. E. Mateo-Cid. 1999. Adiciones a la ficoflora marina bentónica de las costas de Oaxaca, México. Polibotánica 10: 3958.

Murano, E. 1995. Chemical structure and quality of agars from Gracilaria. Journal of Applied Phycology 7: 245254.

Orduña-Rojas, J., K. Y. García-Camacho, P. Orozco-Meyer, R. Ríosmena-Rodríguez, I. Pacheco-Ruíz, J. A. Zertuche & A. E. Melling-López. 2008. Agar properties of two species of Gracilariaceae from the Gulf of California. Journal of Applied Phycology 20: 169175.

Oyieke, H. A. 1993. The yield, physical and chemical properties of agar from Gracilaria species (Gracilariales, Rhodophyta) of the Kenya Coast. Hydrobiologia 260/261: 613620.

Pereira, L., S. F. Gheda & P. J. A. Ribeiro-Claro. 2013. Analysis by vibrational spectroscopy of seaweed polysaccharides with potential use in food, pharmaceutical, and cosmetic industries. International Journal of Carbohydrate Chemistry 2013: 537202. DOI: 10.1155/2013/537202

Praiboon, J., A. Chirapart, Y. Akakabe, O. Bhumibhamon & T. Kajiwara. 2006. Physical and chemical characterization of agar polysaccharides extracted from the Thai and Japanese species of Gracilaria. ScienceAsia 32(1): 1117.

Rebello, J., M. Ohno, H. Ukeda, H. Kusunose & M. Sawamura. 1997. 3,6 anhydrogalactose, sulfate and methoxyl contents of commercial agarophytes from different geographical origins. Journal of Applied Phycology 9: 367370.

Tako, M. 2015. The principle of polysaccharide gels. Advances in Bioscience and Biotechnology 6(1): 2236.

Tapia-García, M., M. C. García-Abad, F. E. Penagos-García, J. L. Moreno-Ruíz, L. G. Juárez-Hernández, J. M. Ramírez-Gutiérrez & D. Herrera-Olayo. 2011. Subsistemas hidrológicos de la laguna Mar Muerto Oaxaca-Chiapas, México. Lacandonia 5(1): 97112.

Terho, T. T. and Hartiala, K. 1971. Method for determination of sulfate content of glycosaminoglycans. Analytical Biochemistry 41: 471476.

Vergara-Rodarte, M. A., G. Hernández-Carmona, Y. E. Rodríguez-Montesinos, D. L. Arvizu-Higuera, R. Riosmena-Rodríguez & J. I. Murillo-Alvarez. 2010. Seasonal variation of agar from Gracilaria vermiculophylla, effect of alkali treatment time, and stability of its Colagar. Journal of Applied Phycology 22: 753759.

Viana, A. G., M. D. Noseda, M. E. R. Duarte & A. S. Cerezo. 2004. Alkali modification of carrageenans. Part V. The iota-nu hybrid carrageenan from Eucheuma denticulatum and its cyclization to iota-carrageenan. Carbohydrate Polymers 58(4): 455460.

Villanueva, R. D., J. B. Romero, A. L. R. Ragasa & M. N. E. Montaño. 2010a. Agar from the red seaweed, Laurencia flexilis (Ceramiales, Rhodophyta) from northern Philippines. Phycological Research 58(2): 151156.

Villanueva, R. D., A. M. M. Sousa, M. P. Gonçalves, M. Nilsson & L. Hilliou. 2010b. Production and properties of agar from the invasive marine alga, Gracilaria vermiculophylla (Gracilariales, Rhodophyta). Journal of Applied Phycoligy 22: 211220.

Yaphe, W. & G. P. Arsenault. 1965. Improved resorcinol reagent for the determination of fructose and of 3,6-anhydrogalactose in polysaccharides. Analytical Biochemistry 13: 143148.

Zar, J. H. 2010. Biostatistical Analysis. Pearson, New Jersey. 994 p.

Downloads

Publicado

2021-10-21

Como Citar

Trejo Méndez, M. de J., Hernández Carmona, G., Arvizu Higuera, D. L., Rosas Alquicira, E. F., Montoya Márquez, J. A., Rodríguez Montesinos, Y. E., & Muñoz Ochoa, M. (2021). Spatial and seasonal effects on physicochemical properties of native agar from Gracilaria parvispora (Rhodophyta) in the Tropical Mexican Pacific (Oaxaca-Chiapas). HIDROBIOLÓGICA, 31(2). https://doi.org/10.24275/uam/izt/dcbs/hidro/2021v31n2/Trejo

Edição

Seção

Artículos

Artigos mais lidos pelo mesmo(s) autor(es)