Bioacumulación de cianotoxinas en ecosistemas dulceacuícolas en América Latina: una revisión

Autores/as

  • Carlos A. Garita-Alvarado Unidad Multidisciplinaria de Docencia e Investigación (UMDI), Facultad de Ciencias, campus Juriquilla, Querétaro. Universidad Nacional Autónoma de México. Boulevard Juriquilla 3001, Juriquilla, Querétaro, 76230, México https://orcid.org/0000-0003-2815-3829
  • Miriam G. Bojorge-García Unidad Multidisciplinaria de Docencia e Investigación (UMDI), Facultad de Ciencias, campus Juriquilla, Querétaro. Universidad Nacional Autónoma de México. Boulevard Juriquilla 3001, Juriquilla, Querétaro, 76230, México
  • Enrique A. Cantoral Uriza Unidad Multidisciplinaria de Docencia e Investigación (UMDI), Facultad de Ciencias, campus Juriquilla, Querétaro. Universidad Nacional Autónoma de México. Boulevard Juriquilla 3001, Juriquilla, Querétaro, 76230, México

Palabras clave:

acuacultura, estudios de campo, impacto en la salud humana, microcistinas, saxitoxinas

Resumen

Antecedentes: La creciente evidencia de riesgo para el medio ambiente y la salud humana por la exposición a cianotoxinas durante las floraciones de cianobacterias se ha reportado en todo el mundo. A pesar del conocimiento de la presencia de cianotoxinas en América Latina, la bioacumulación de cianotoxinas en ambientes de agua dulce no ha sido revisada para la región. Objetivos: Revisar el conocimiento actual sobre la acumulación de cianotoxinas en tejidos de organismos de agua dulce en estudios de campo en América Latina. Métodos: Se realizó una extensa búsqueda bibliográfica para construir una base de datos que incluyera información sobre la acumulación de cianotoxinas en organismos que habitan ambientes de agua dulce en América Latina (de México a Argentina). Resultados: Encontramos veintiún estudios de 2001 a 2020, incluidos veintisiete cuerpos de agua en su mayoría eutróficos, la mayoría de Brasil. Microcystis fue el género productor de cianotoxinas más reportado. Los peces comprendieron la mayoría de las especies que acumulaban cianotoxinas (20 especies). Oreochromis niloticus fue la especie más estudiada, y el 80% de las especies de peces incluidas tienen importancia comercial, lo que destaca una vía potencial de exposición a los humanos. Algunos estudios demostraron la reducción de cianotoxinas en los tejidos después de un tiempo de depuración experimental. Además, los cálculos de las ingestas humanas potenciales de microcistinas por consumo de pescado excedieron las recomendaciones de ingestas tolerables en la mayoría de los casos. Conclusiones: En América Latina, los estudios se han realizado en pocos países, sin embargo, estos trabajos indican un riesgo para el medio ambiente y la salud humana por la bioacumulación de cianotoxinas. Se necesita más investigación científica sobre la bioacumulación de cianotoxinas, pero también esfuerzos para mejorar la gestión a nivel local con la finalidad de reducir la eutrofización.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Amé, M. V., L. N. Galanti, M. L. Menone, M. S. Gerpe, V. J. Moreno & D. A. Wunderlin. 2010. Microcystin–LR, –RR, –YR and –LA in water samples and fishes from a shallow lake in Argentina. Harmful Algae 9 (1): 66-73. DOI:10.1016/j.hal.2009.08.001

Apeldoorn, M. E., H. P. Van Egmond, G. J. Speijers & G. J. Bakker. 2007. Toxins of cyanobacteria. Molecular Nutrition & Food Research 51 (1): 7-60. DOI:10.1002/mnfr.200600185

Aráoz, R., J. Molgó & N. T. de Marsac. 2010. Neurotoxic cyanobacterial toxins. Toxicon 56 (5): 813-828. DOI:10.1016/j.toxicon.2009.07.036

Avendaño Lopez, A., & C. Arguedas Villa. 2006. Microcistina en plantas de tratamiento de agua para consumo humano en un ambiente tropical: el Área Metropolitana de Costa Rica. Revista de Biología Tropical 54 (3): 711-716. DOI:10.15517/rbt.v54i3.12557

Baganz, D., G. Staaks & C. Steinberg. 1998. Impact of the cyanobacteria toxin, microcystin-LR on behaviour of zebrafish, Danio rerio. Water research 32 (3): 948-952. DOI:10.1016/S0043-1354(97)00207-8

Banerjee, S., S. Maity, R. Guchhait, A. Chatterjee, C. Biswas, M. Adhikari & K. Pramanick. 2021. Toxic effects of cyanotoxins in teleost fish: a comprehensive review. Aquatic Toxicology 240: 105971. DOI:10.1016/j. aquatox.2021.105971

Berry, J. P., & O. Lind. 2010. First evidence of “paralytic shellfish toxins” and cylindrospermopsin in a Mexican freshwater system, Lago Catemaco, and apparent bioaccumulation of the toxins in “tegogolo” snails (Pomacea patula catemacensis). Toxicon 55 (5): 930-938. DOI:10.1016/j.toxicon.2009.07.035

Berry, J. P., E. Lee, K. Walton, A. E. Wilson & F. Bernal-Brooks. 2011. Bioaccumulation of microcystins by fish associated with a persistent cyanobacterial bloom in Lago de Pátzcuaro (Michoacan, Mexico). Environmental Toxicology and Chemistry 30 (7): 1621-1628. DOI:10.1002/etc.548

Berry, J. P., A. Jaja-Chimedza, L. Dávalos-Lind & O. Lind. 2012. Apparent bioaccumulation of cylindrospermopsin and paralytic shellfish toxins by finfish in Lake Catemaco (Veracruz, Mexico). Food Additives & Contaminants: Part A 29 (2): 314-321. DOI:10.1080/19440049. 2011.597785

Brooks, B. W., J. M. Lazorchak, M. D. Howard, M. V. V. Johnson, S. L. Morton, D. A. Perkins & J. A. Steevens. 2016. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems?. Environmental Toxicology and Chemistry 35 (1): 6-13. DOI:10.1002/etc.3220

Buratti, F. M., M. Manganelli, S. Vichi, M. Stefanelli, S. Scardala, E. Testai & E. Funari. 2017. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Archives of Toxicology 91 (3): 1049-1130. DOI:10.1007/ s00204-016-1913-6

Calado, S. L., J. Wojciechowski, G. S. Santos, V. F. de Magalhães, A. A. Padial, M. M. Cestari & H. C. D. S. de Assis. 2017. Neurotoxins in a water supply reservoir: An alert to environmental and human health. Toxicon 126: 12-22. DOI:10.1016/j.toxicon.2016.12.002

Calado, S. L., G. S. Santos, T. P. B. Leite, J. Wojciechowski, M. N. Junior, D. C Bozza, V. F. de Magalhães, M. M. Cestari, V. Prodocimo & H. C. S. de Assis. 2018. Depuration time and sublethal effects of microcystins in a freshwater fish from water supply reservoir. Chemosphere 210: 805-815. DOI:10.1016/j.chemosphere.2018.07.075

Calado, S. L., G. S. Santos, J. Wojciechowski, V. F. de Magalhães, & H. C. S. de Assis. 2019. The accumulation dynamics, elimination and risk assessment of paralytic shellfish toxins in fish from a water supply reservoir. Science of The Total Environment 651: 3222-3229. DOI:10.1016/j.scitotenv.2018.10.046

Cantoral Uriza, E. A., A. D. Asencio Martínez & M. Aboal Sanjurjo. 2017. Cianotoxinas: efectos ambientales y sanitarios. Medidas de prevención. Hidrobiológica 27 (2): 241-251. DOI:10.24275/uam/izt/dcbs/ hidro/2017v27n2/Cantoral

Cazenave, J., D. A. Wunderlin, M. A. Bistoni, M. V. Amé, E. Krause, S. Pflugmacher & C. Wiegand. 2005. Uptake, tissue distribution and accumulation of microcystin-RR in Corydoras paleatus, Jenynsia multidentata and Odontesthes bonariensis: a field and laboratory study. Aquatic Toxicology 75 (2): 178-190. DOI:10.1016/j.aquatox.2005.08.002

Chellappa, N. T., S. L. Chellappa & S. Chellappa. 2008. Harmful phytoplankton blooms and fish mortality in a eutrophicated reservoir of Northeast Brazil. Brazilian Archives of Biology and Technology 51: 633- 641. DOI:10.1590/S1516-89132008000400022

Chen, L., J. Chen, X. Zhang, & P. Xie. 2016. A review of reproductive toxicity of microcystins. Journal of Hazardous Materials 301: 381-399. DOI:10.1016/j.jhazmat.2015.08.041

Falconer, I., J. Bartram, I. Chorus, T. Kuiper-Goodman, H. Utkilen, M. Burch & G. A. Codd. 1999. Safe levels and safe practices. In: Chorus, I. & J. Bartram (Eds.) Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. E & FN Spon, pp. 161-182.

Chorus, I., J. Fastner, & M. Welker. 2021. Cyanobacteria and cyanotoxins in a changing environment: Concepts, controversies, challenges. Water 13 (18): 2463. DOI:10.3390/w13182463

Clemente, Z., R. H. Busato, C. A. O. Ribeiro, M. M. Cestari, W. A. Ramsdorf, V. F. Magalhaes, & H. C. S. Assis. 2010. Analyses of paralytic shellfish toxins and biomarkers in a southern Brazilian reservoir. Toxicon 55 (2-3): 396-406. DOI:10.1016/j.toxicon.2009.09.003

Codd, G. A., L. F. Morrison, & J. S. Metcalf. 2005. Cyanobacterial toxins: risk management for health protection. Toxicology and Applied Pharmacology 203 (3): 264-272. DOI:10.1016/j.taap.2004.02.016

Deblois, C. P., R. Aranda-Rodriguez, A. Giani & D. F. Bird. 2008. Microcystin accumulation in liver and muscle of tilapia in two large Brazilian hydroelectric reservoirs. Toxicon 51 (3): 435-448. DOI:10.1016/j. toxicon.2007.10.017

Dörr, F. A., E. Pinto, & R. M. Soares. 2010. Microcystins in South American aquatic ecosystems: Occurrence, toxicity and toxicological assays. Toxicon 56 (7): 1247-1256. DOI:10.1016/j.toxicon.2010.03.018

Drobac, D., N. Tokodi, J. Simeunović, V. Baltić, D. Stanić, & Z. Svirčev. 2013. Human exposure to cyanotoxins and their effects on health. Archives of Industrial Hygiene and Toxicology 64 (2): 305-315. DOI:10.2478/10004-1254-64-2013-2320

EFSA. 2009. Scientific Opinion: marine biotoxins in shellfish-saxitoxin group. EFSA Journal 1019: 1-76. DOI:10.2903/j.efsa.2009.1019

Ettoumi, A., F. El Khalloufi, I. El Ghazali, B. Oudra, A. Amrani, H. Nasri & N. Bouaïcha. 2011. Bioaccumulation of cyanobacterial toxins in aquatic organisms and its consequences for public health. In: Kattel, G (Ed.) Zooplankton and Phytoplankton: Types, Characteristics and Ecology. Nova Science Publishers, pp. 1-33.

Ferrão-Filho, A. D. S., & B. Kozlowsky-Suzuki. 2011. Cyanotoxins: bioaccumulation and effects on aquatic animals. Marine Drugs 9 (12): 2729-2772. DOI:10.3390/md9122729

Flores, N. M., T. R. Miller, & J. D. Stockwell. 2018. A global analysis of the relationship between concentrations of microcystins in water and fish. Frontiers in Marine Science 5: 1-14. DOI:10.3389/ fmars.2018.00030

Friesen, C. 2015. Agricultural Runoff, Cyanobacterial Blooms in Lake Erie and Public Health: A Knowledge Synthesis. Master thesis. University of Guelph, Canada. 140p.

Galanti, L. N., M. V. Amé, & D. A. Wunderlin. 2013. Accumulation and detoxification dynamic of cyanotoxins in the freshwater shrimp Palaemonetes argentinus. Harmful Algae 27: 88-97. DOI:10.1016/j. hal.2013.05.007

Galvao, J. A., M. Oetterer, M. do Carmo Bittencourt-Oliveira, S. Gouvêa-Barros, S. Hiller, K. Erler & P. Kujbida. 2009. Saxitoxins accumulation by freshwater tilapia (Oreochromis niloticus) for human consumption. Toxicon 54 (6): 891-894. DOI:10.1016/j.toxicon.2009.06.021

Glibert, P. M., & J. M. Burkholder. 2018. Causes of harmful algal blooms. In: Shumway, S. E., J. M. Burkholder & S. L. Morton (Eds). Harmful Algal Blooms: A Compendium Desk Reference. John Wiley & Sons, pp. 1-38. DOI:10.1002/9781118994672.ch1

Glibert, P. M. 2020. Harmful algae at the complex nexus of eutrophication and climate change. Harmful Algae 91: 101583. DOI:10.1016/j. hal.2019.03.001

Gomez, L., I. Álvarez & J. C. Rodríguez. 2012. CUBA: Toxic cyanobacteria risk assessment, research and management. In: Chorus, I (Ed). Current approaches to Cyanotoxin risk assessment, risk management and regulations in different countries. Federal Environment Agency (Umweltbundesamt), pp. 40-48.

Hauser-Davis, R. A., R. T. Lavradas, R. C. Lavandier, E. G. A. Rojas, A. W. S. Guarino & R. L. Ziolli. 2015. Accumulation and toxic effects of microcystin in tilapia (Oreochromis niloticus) from a eutrophic Brazilian lagoon. Ecotoxicology and Environmental Safety 112: 132-136. DOI:10.1016/j.ecoenv.2014.10.036

Hudnell, H. K., & Q. Dortch. 2008. A synopsis of research needs identified at the interagency, international symposium on cyanobacterial harmful algal blooms (ISOC-HAB). In: Hudnell, H. K. (Ed). Cyanobacterial harmful algal blooms: state of the science and research needs Springer, pp. 17-43.

Humpage, A. R., & I. R. Falconer. 2003. Oral toxicity of the cyanobacterial toxin cylindrospermopsin in male Swiss albino mice: determination of no observed adverse effect level for deriving a drinking water guideline value. Environmental Toxicology: An International Journal 18 (2): 94-103. DOI:10.1002/tox.10104

Humpage, A. R., & D. Cunliffe. 2021. Exposure to cyanotoxins: understanding it and short term interventions to prevent it. Drinking water. In: Chorus, I. & M. Welker (Eds). Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management. CRC Press, pp. 305-332.

Ibelings, B. W., & I. Chorus. 2007. Accumulation of cyanobacterial toxins in freshwater “seafood” and its consequences for public health: a review. Environmental Pollution 150 (1): 177-192. DOI:10.1016/j. envpol.2007.04.012

Ibelings, B. W., A. Foss & I. Chorus. 2021. Exposure to cyanotoxins: understanding it and short term interventions to prevent it. Food. In: Chorus, I. & M. Welker (Eds). Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management. CRC Press, pp. 368-384.

Karjalainen, M., M. Reinikainen, L. Spoof, J. A. Meriluoto, K. Sivonen & M. Viitasalo. 2005. Trophic transfer of cyanobacterial toxins from zooplankton to planktivores: consequences for pike larvae and mysid shrimps. Environmental Toxicology 20 (3): 354-362. DOI:10.1002/ tox.20112

Kozlowsky-Suzuki, B., A. E. Wilson, & A. da Silva Ferrao-Filho. 2012. Biomagnification or biodilution of microcystins in aquatic foodwebs? Meta-analyses of laboratory and field studies. Harmful Algae 18: 47-55. DOI:10.1016/j.hal.2012.04.002

Lance, E., A. Petit, W. Sanchez, C. Paty, C. Gerard & M. Bormans. 2014. Evidence of trophic transfer of microcystins from the gastropod Lymnaea stagnalis to the fish Gasterosteus aculeatus. Harmful Algae 31: 9-17. DOI:10.1016/j.hal.2013.09.006

Lawton, L. A., J. S. Metcalf, B. Žegura, R. Junek, M. Welker, A. K. Törökné, & L. Bláha. 2021. Laboratory analysis of cyanobacterial toxins and bioassays. In: Chorus, I. & M. Welker (Eds). Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management. CRC Press, pp. 745-800.

León, C., & G. A. Peñuela. 2019. Detected cyanotoxins by UHPLC MS/MS technique in tropical reservoirs of northeastern Colombia. Toxicon 167: 38-48. DOI:10.1016/j.toxicon.2019.06.010

Lopes, T. O. M., L. S. Passos, L. V. Vieira, E. Pinto, F. Dorr, R. Scherer & L. C. Gomes. 2020. Metals, arsenic, pesticides, and microcystins in tilapia (Oreochromis niloticus) from aquaculture parks in Brazil. Environmental Science and Pollution Research 27 (16): 20187-20200. DOI:10.1007/s11356-020-08493-x

Magalhães, V. F., R. M. Soares & S. M. Azevedo. 2001. Microcystin contamination in fish from the Jacarepaguá Lagoon (Rio de Janeiro, Brazil): ecological implication and human health risk. Toxicon 39 (7): 1077- 1085. DOI:10.1016/S0041-0101(00)00251-8

Malbrouck, C., & P. Kestemont. 2006. Effects of microcystins on fish. Environmental Toxicology and Chemistry 25 (1): 72-86. DOI:10.1897/05-029R.1

Marie, B. (2020). Disentangling of the ecotoxicological signal using “omics” analyses, a lesson from the survey of the impact of cyanobacterial proliferations on fishes. Science of The Total Environment 736: 139701. DOI:10.1016/j.scitotenv.2020.139701

Mendes, C. F., J. E. L. Barbosa & J. F. Nery. 2016. Microcystin accumulation and potential depuration on muscle of fishes of fish farm: implications to public health. International Journal of Innovative Studies in Aquatic Biology and Fisheries 2: 1-10. DOI:10.20431/2455- 7670.0202001

Metcalf, J. S., M. Tischbein, P. A. Cox, & E. W. Stommel. 2021. Cyanotoxins and the Nervous System. Toxins 13(9): 660. DOI:10.3390/toxins13090660

Morales, V.V., & R.R. Morales. 2006. Regional review on aquaculture development. 1. Latin America and the Caribbean 2005. FAO Fisheries Circular. No. 1017/1. Rome. 177 pp Morandi, M. 2015. Bioacumulación de microcistina-LR en tarariras (Hoplias sp.) de un embalse eutrófico (Rincón del Bonete, Uruguay) y su riesgo potencial para la salud humana. Tesis de Maestría. Universidad de la República, Uruguay. 49p.

Moreira, C., V. Vasconcelos, & A. Antunes. 2022. Cyanobacterial Blooms: Current Knowledge and New Perspectives. Earth 3(1): 127-135. DOI:10.3390/earth3010010

Moura, A.N, N. K. Aragao-Tavares & C. A. Amorim. 2018. Cyanobacterial blooms in freshwater bodies from a semiarid region, Northeast Brazil: A review. Journal of Limnology 77 (2): 179-188. DOI:10.4081/ jlimnol.2018.1646

Mowe, M. A., S. M. Mitrovic, R. P. Lim, A. Furey & D. C. Yeo. 2015. Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors. Journal of Limnology 74 (2): 205-224. DOI:10.4081/jlimnol.2014.1005

Munoz, M., S. Cirés, Z. M. de Pedro, J. A. Colina, Y. Velásquez-Figueroa, J. Carmona-Jiménez, A. Caro-Borrero, A. Salazar, M. S. M. Fuster, D. Contreras, E. Perona, A. Quesada, & J. A. Casas. 2021. Overview of toxic cyanobacteria and cyanotoxins in Ibero-American freshwaters: Challenges for risk management and opportunities for removal by advanced technologies. Science of The Total Environment 761: 143197. DOI:10.1016/j.scitotenv.2020.143197

Oliveira, N. B., C. A. Schwartz, C. Bloch, L. Paulino & O. R. Pires. 2013. Bioacumulation of cyanotoxins in Hypophthalmichthys molitrix (silver carp) in Paranoá Lake, Brasilia-DF, Brazil. Bulletin of Environmental Contamination and Toxicology 90 (3): 308-313. DOI:10.1007/ s00128-012-0873-7

Pacheco, F. S., M. C. S. Soares, A. T. Assireu, M. P. Curtarelli, F. Roland, G. Abril, J. L. Stech, P. C. Alvalá, & J. P. Ometto. 2015. The effects of river inflow and retention time on the spatial heterogeneity of chlorophyll and water–air CO 2 fluxes in a tropical hydropower reservoir. Biogeosciences 12 (1): 147-162. DOI:10.5194/bg-12-147-2015

Paerl, H. W., & J. Huisman. 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports, 1 (1): 27-37. DOI:10.1111/j.1758- 2229.2008.00004.x

Pérez-Morales, A., A. Olivos-Ortiz, S. I. Quijano-Scheggia, C. A. Espinosa-Rodríguez & M. A. Jiménez-Santos. 2016. Estado actual del estudio de cianobacterias dulceacuícolas formadoras de florecimientos en el centro de México. In: García-Mendoza, E., S. I. Quijano-Scheggia, A. Olivos-Ortiz, & E. J. Núñez-Vázquez (Eds.). Florecimientos Algales Nocivos en México. CICESE, pp. 408-421.

Pham, T. L., & M. Utsumi. 2018. An overview of the accumulation of microcystins in aquatic ecosystems. Journal of Environmental Management 213: 520-529. DOI:10.1016/j.jenvman.2018.01.077

Rico-Martínez, R., A. Pérez-Legaspi, G.E. Santos-Medrano, J. Alvarado-Flores & M.A. Arzate-Cárdenas. (2017). Ecotoxicological Studies of Freshwater Ecosystems in Latin America: Diagnosis, Perspectives, and Proposals. In. Araújo C.V.M. & C.H. Shinn (Eds). Ecotoxicology in Latin America. Nova Science Publishers, pp. 137-161. Romo, S., F. Fernández, Y. Ouahid & A. Barón-Sola. 2012. Assessment of microcystins in lake water and fish (Mugilidae, Liza sp.) in the largest Spanish coastal lake. Environmental Monitoring and Assessment 184 (2): 939-949. DOI:10.1007/s10661-011-2011-0

Scarlett, K. R., S. Kim, L. M. Lovin, S. Chatterjee, J. T. Scott, & B. W. Brooks. 2020. Global scanning of cylindrospermopsin: Critical review and analysis of aquatic occurrence, bioaccumulation, toxicity and health hazards. Science of The Total Environment 738: 139807. DOI:10.1016/j.scitotenv.2020.139807

Singh, N. K., & D. W. Dhar. 2013. Cyanotoxins, related health hazards on animals and their management: A review. The Indian Journal of Animal Sciences 83: 1111-1127. https://epubs.icar.org.in/index. php/IJAnS/article/view/34749

Salomón, S., C. A. Rivera-Rondón, & Á. M. Zapata. 2020. Cyanobacterial blooms in Colombia: State of knowledge and research needs in the context of climate global change. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 44 (171): 376-391. DOI:10.18257/raccefyn.1050

Sotton, B., J. Guillard, O. Anneville, M. Maréchal, O. Savichtcheva, & I. Domaizon. 2014. Trophic transfer of microcystins through the lake pelagic food web: evidence for the role of zooplankton as a vector in fish contamination. Science of the Total Environment 466: 152-163. DOI:10.1016/j.scitotenv.2013.07.020

Sunesen, I., S. M. Méndez, J. E. Mancera-Pineda, M. Y. D. Bottein & H. Enevoldsen. 2021. The Latin America and Caribbean HAB status report based on OBIS and HAEDAT maps and databases. Harmful Algae 102: 101920. DOI:10.1016/j.hal.2020.101920

Svirčev, Z., D. Lalić, G. B. Savić, N. Tokodi, D. D. Backović, L. Chen, J. Meriluoto, & G. A. Codd. 2019. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Archives of Toxicology 93 (9): 2429-2481. DOI:10.1007/s00204-019- 02524-4

Testai, E., F. M. Buratti, E. Funari, M. Manganelli, S. Vichi, N. Arnich, R. Biré, V. Fessard & A. Sialehaamoa. 2016. Review and analysis of occurrence, exposure and toxicity of cyanobacteria toxins in food. EFSA Supporting Publications 13(2): 998E. DOI:10.2903/sp.efsa.2016.EN-998

Tillmanns, A. R., A. E. Wilson, F. R. Pick & O. Sarnelle. 2008. Meta-analysis of cyanobacterial effects on zooplankton population growth rate: species-specific responses. Fundamental and Applied Limnology 171 (4): 285. DOI:10.1127/1863-9135/2008/0171-0285

Valdor, R., & M. Aboal. 2007. Effects of living cyanobacteria, cyanobacterial extracts and pure microcystins on growth and ultrastructure of microalgae and bacteria. Toxicon 49 (6): 769-779. DOI:10.1016/j. toxicon.2006.11.025

Vasconcelos, V., A. Martins, M. Vale, A. Antunes, J. Azevedo, M. Welker, & G. Montejano. 2010. First report on the occurrence of microcystins in planktonic cyanobacteria from Central Mexico. Toxicon 56 (3): 425- 431. DOI:10.1016/j.toxicon.2010.04.011

Vasconcelos, J. F., J. E. L. Barbosa, W. Lira, & S. M. F. O. Azevedo. 2013. Microcystin bioaccumulation can cause potential mutagenic effects in farm fish. The Egyptian Journal of Aquatic Research 39(3): 185- 192. DOI:10.1016/j.ejar.2013.11.002 Wood, R. 2016. Acute animal and human poisonings from cyanotoxin exposure—A review of the literature. Environment International 91: 276-282. DOI:10.1016/j.envint.2016.02.026

Zamora-Barrios, C. A., S. Nandini & S. S. S. Sarma. 2019. Bioaccumulation of microcystins in seston, zooplankton and fish: A case study in Lake Zumpango, Mexico. Environmental Pollution 249: 267-276. DOI:10.1016/j.envpol.2019.03.029

Zhang, D., P. Xie, Y. Liu & T. Qiu. 2009. Transfer, distribution and bioaccumulation of microcystins in the aquatic food web in Lake Taihu, China, with potential risks to human health. Science of the Total Environment 407 (7): 2191-2199. DOI:10.1016/j.scitotenv.2008.12.039

Zhang, Y., J. K. Whalen, & S. Sauvé. 2021. Phytotoxicity and bioconcentration of microcystins in agricultural plants: Meta-analysis and risk assessment. Environmental Pollution 272: 115966. DOI:10.1016/j. envpol.2020.115966

Zurawell, R. W., H. Chen, J. M. Burke, & E. E. Prepas. 2005. Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments. Journal of Toxicology and Environmental Health, Part B 8 (1): 1-37. DOI:10.1080/10937400590889412

Descargas

Publicado

2023-09-25

Cómo citar

Garita-Alvarado, C. A., Bojorge-García, M. G., & Cantoral Uriza, E. A. (2023). Bioacumulación de cianotoxinas en ecosistemas dulceacuícolas en América Latina: una revisión. HIDROBIOLÓGICA, 33(3). Recuperado a partir de https://hidrobiologica.izt.uam.mx/hidrobiologica/index.php/revHidro/article/view/1710

Número

Sección

Artículos de Revisión

Artículos más leídos del mismo autor/a