Trophic network structure and dynamics simulations in the coral ecosystem of Yelapa, Mexican Pacific

Authors

  • Brenda Berenice Hermosillo-Nuñez Laboratorio de Esclerocronología, Ecología y Pesquerías de la Zona Costera, Departamento de Ecología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE)
  • Luis Eduardo Calderón-Aguilera Laboratorio de Esclerocronología, Ecología y Pesquerías de la Zona Costera, Departamento de Ecología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE)
  • Fabian Alejandro Rodríguez-Zaragoza Laboratorio de Ecología Molecular, Microbiología y Taxonomía, Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara.
  • Amilcar Levi Capul-Magaña Laboratorio de Ecología Marina, Centro Universitario de la Costa, Universidad de Guadalajara

Keywords:

Ascendency, mass-balance model, network analysis, resilience

Abstract

Background. Ecological Network Analysis has been used for defining aspects concerning the structure, health, and dynamics of marine ecosystems. Objectives. Evaluate the ecosystem’s structure, organization, and matu-rity in the shallow rocky reef ecosystem in Yelapa. Also, we determine the most affected functional groups by disturbances simulated and those which generate less resilience in the ecosystem. Methods. A mass-balan-ce trophic model Ecopath with Ecosim, was constructed, and Ascendency›s theory was used to evaluate the ecosystem properties. A Mixed Trophic Impacts matrix was used to assess direct and indirect trophic effects on the network. The functional groups more sensitive to disturbances were determined using Ecosim dynamics simulations in the short and long term with two mortality scenarios (an increase of 25 % and 50 %). Finally, the System Recovery Time was used as a measure of resilience. Results. The Yelapa rocky-reef ecosystem ex-hibits the feature of a mature, organized, and developing ecosystem but is less resistant to disturbances. Several fish groups, zooplankton, and phytoplankton produced the most remarkable effects in the trophic network. In addition, the phytoplankton, chlorophyta, and the group of other benthic invertebrates propagated more effects on other model components. Conclusions. Yelapa rocky reef would lose resilience if the functional groups eels & morays, other benthic invertebrates, snappers, and phytoplankton were disturbed.

Downloads

Download data is not yet available.

References

Aliño, P. M., L. T. McManus, J. W. McManus, C. L. Nañola Jr., M. D. Fortes, G. C. Trono Jr. &

G. S. Jacinto. 1993. Initial parameter estimations of a coral reef flat ecosystem in Bolinao, Pangasinan, northwestern Philippines. In: Christensen, V. & D. Pauly (Eds). Trophic models of aquatic ecosystems. ICLARM Conf. Proc 26, pp. 252-258.

Assis, J., N. Castilho-Coelho, T. Lamy, M. Valero, F. Alberto & E. Alvares-Serrao. 2016. Deep reefs are climatic refugia for genetic diversity of marine forests. Journal of Biogeography 43: 833-844. DOI: 10.1111/jbi.12677

Calderon-Aguilera, L. E., H. Reyes-Bonilla, M. Olán-González, F. R. Castañeda-Rivero & J.

C. Perusquía-Ardón. 2021. Estimated flows and biomass in a no-take coral reef from the Eastern tropical Pacific through network analysis. Ecological Indicators 123: 107359. DOI: 10.1016/j.ecolind.2021.107359

Castañeda-Rivero, F. R. 2017. Ecología funcional de los ensambles de macroinvertebrados epibentónicos en el norte del Golfo de California. Tesis de Maestría en Ciencias. Centro de Investigación Científica y de Educación Superior de Ensenada, México. 190 p.

Christensen, V. 1995. Ecosystem maturity–towards quantification. Ecological Modelling 77: 3-32. DOI: 10.1016/0304-3800(93)E0073-C

Christensen, V. & C.J. Walters. 2004. Ecopath with Ecosim: methods, capabilities, and limitations. Ecological Modelling 172: 109-139. DOI: 10.1016/j.ecolmodel.2003.09.003

Cotler, H., A. Garrido, V. Bunge & M. L. Cuevas. 2010. Las cuencas hidrográficas de México: Priorización y toma de decisiones. In: Cotler, H. (Ed.). Las cuencas hidrográficas de México: Diagnóstico y priorización. Instituto Nacional de Ecología y Cambio Climático, México. pp.

-215.

Croll, D. A., K. M. Newton, K. Weng, F. Galván-Magaña, J. O’Sullivan & H. Dewar. 2012. Movement and habitat use by the spine-tail devil ray in the Eastern Pacific Ocean. Marine Ecology Progress Series 465: 193-200. DOI: 10.3354/meps09900

Cruz-Romero, M., E. Espino-Barr & A. García-Boa. 1993. Aspectos poblacionales de cinco especies de la familia Haemulidae (Pisces) en la costa de Colima, México. Ciencia Pesquera 10: 43-54.

Elser, J. J., M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin & J. E. Smith. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10: 1135-1142. DOI: 10.1111/j.1461-0248.2007. 01113.x

Fath, B. D., U. M. Scharler, R. E. Ulanowicz & B. Hannon. 2007. Ecological network analysis: network construction. Ecological Modelling 208: 49-55. DOI: 10.1016/j.ecolmodel.2007.04.029

Finn, J. F. 1980. Flow analysis of models of the hubbard brook ecosystem. Ecology 61: 562-571. DOI: 10.2307/1937422

Flores-Ortega, J. R., E. Avila-castro, H. J. Haro-Preciado & E. Godínez-Domínguez. 2014. Hábitos alimentarios e interacciones tróficas de Anisotremus interruptus (Pisces: Haemulidae) y Lutjanus argentiventris (Pisces: Lutjanidae) en el Pacífico Central Mexicano. Latin American Journal of Aquatic Research 42(1): 276-282. DOI:

/vol42-issue1-fulltext-24

Frausto-Illescas, T. C. 2012. Simulación del efecto del turismo subacuático sobre el ecosistema arrecifal de Cabo Pulmo, Baja California Sur, mediante un modelo trófico. Tesis de Maestría en Ciencias, Centro de Investigación Científica y de Educación Superior de Ensenada, México. 66 pp.

González-Luna, C., A. Filonov, O. Mireles & I. Tereshchenko. 2019. Análisis espectral y dispersión superficial de detritos suspendidos en la Bahía de Banderas mediante imágenes de satélite. Revista Cartográfica 98: 223-237. DOI:10.35424/rcarto.i98.148

Hermosillo-Núñez, B. B., M. Ortiz, F. A. Rodríguez-Zaragoza & A. L. Cupul-Magaña. 2018. Trophic network properties of coral ecosystems in three marine protected areas along the Mexican Pacific Coast: Assessment of systemic structure and health. Ecological Complexity 36: 73-85. DOI: 10.1016/j.ecocom.2018.06.005

Heymans, J. J., M. Coll, S. Libralato, L. Morissette & V. Christensen. 2014. Global patterns in ecological indicators of marine food webs: A modelling approach. PLoS ONE 9 (4): e95845. DOI: 10.1371/journal. pone.0095845

Heymans, J. J., M. Coll, J. S. Link, S. Mackinson, J. Steenbeek, C. Walters & V. Christensen. 2016. Best practice in Ecopath with Ecosim food-web models for ecosystem-based management. Ecological Modelling 331: 173-184. DOI: 10.1016/j.ecolmodel.2015.12.007

Kaufman, A. G. & S. R. Borrett. 2010. Ecosystem network analysis indicators are generally robust to parameter uncertainty in a phosphorus model of Lake Sidney Lanier, USA. Ecological Modelling 221: 1230-1238. DOI: 10.1016/j.ecolmodel.2009.12.018

Liu, P. J., K. T. Shao, R. Q. Jan, T. Y. Fan, S. L. Wong, J. S. Hwang, J. P. Chen, C. C. Chen & H. J. Lin. 2009. A trophic model of fringing coral reefs in Nanwan Bay, southern Taiwan suggests overfishing. Marine Environmental Research 68: 106-117. DOI: 10.1016/j.marenvres.2009.04.009

Martínez-Castillo, V., A. P. Rodríguez-Troncoso, J. D. Santiago-Valentín & A. L.

Cupul-Magaña. 2020. The influence of urban pressures on coral physiology on marginal coral reefs of the Mexican Pacific. Coral Reefs 39: 625-637. DOI:

1007/s00338-020-01957-z

Miller, R. L. & B. A. McKee. 2004. Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal Waters. Remote Sensing of Environment 93: 259-266. DOI: 10.1016/j. rse.2004.07.012

Moore, J. C., E. L. Berlow, D. C. Coleman, P. de Ruiter, Q. Dong, A. Hastings, N. Collins Johnson, K. S. McCann, K. Melville, P. J. Morin, K. Nadelhoffer, A. D. Rosemond, D. M. Post, J. L. Sabo, K. M. Scow, M. J. Vanni & D. H. Wall. 2004. Detritus, trophic dynamics, and biodiversity. Ecology Letters 7: 584-600. DOI: 10.1111/j.1461-0248.2004.00606.x

Muhly, T. B., M. Hebblewhite, D. Paton, J. A. Pitt, M. S. Boyce & M. Musiani. 2013. Humans strengthen bottom-up effects and weaken trophic cascades in a terrestrial food web. PLoS ONE 8 (5): e64311. DOI: 10.1371/journal.pone.0064311

Mukherjee, J., S. Karan, M. Chakrabarty, A. Banerjee, N. Rakshit & S. Ray. 2019. An approach towards quantification of ecosystem trophic status and health through ecological network analysis applied in Hooghly-Matla estuarine system, India. Ecological Indicators 100: 55-68. DOI: 10.1016/j.ecolind.2018.08.025

Odum, E. P. 1969. The strategy of ecosystem Development. Science 164: 262-270. DOI: 10.1126/science.164.3877.262

Okey, T. A., S. Banks, A. F. Born, R. H. Bustamante, M. Calvopiña, G. J. Edgar, E. Espinoza,

J. M. Fariña, L. E. Garske, G. K. Reck, S. Salazar, S. Shepherd, V. Toral-Granda & P. Wallen. 2004. A trophic model of a Galápagos subtidal rocky reef for evaluating fisheries and conservation strategies. Ecological Modelling 172: 383-401. DOI: 10.1016/j.ecolmodel.2003.09.019

Opitz, S. 1993. A quantitative model of the trophic interactions in a Caribbean coral reef ecosystem. In: Christensen, V. & D. Pauly (Eds.). Trophic models of aquatic ecosystems. ICLARM Conf. Proc. 26, pp. 259-268.

Ortiz, M. 2018. Robustness of macroscopic-systemic network indices after disturbances on diet-community matrices. Ecological Indicators 95: 509-517. DOI: 10.1016/j.ecolind.2018.07.043

Ortiz, M. & R. Levins. 2017. Self-feedbacks determine the sustainability of human interventions in eco-social complex systems: Impacts on biodiversity and ecosystem health. PLoS ONE 12 (4): e0176163. DOI: 10.1371/journal.pone.0176163

Ortiz, M., F. Berrios, L. Campos, R. Uribe, A. Ramírez, B. Hermosillo-Nuñez, J. González &

F. Rodríguez-Zaragoza. 2015. Mass balanced trophic models and short-term dynamical simulations for benthic ecological systems of Mejillones and Antofagasta bays (SE Pacific): Comparative network structure and assessment of human impacts. Ecological Modelling 309-310: 153-162. DOI: 10.1016/j.ecolmodel.2015.04.006

Pimm, S. L. 1982. Food webs. In: Pimm, S.L. (Ed.). Food Webs, population, and community biology. Springer, pp. 1-11. DOI: 10.1007/978-94- 009-5925-5_1

Portela, E., E. Beier, E. Barton, R. Castro, V. Godínez, E. Palacios-Hernández, P. Fiedler, L. Sánchez-Velasco & A. Trasviña. 2016. Water masses and circulation in the tropical pacific off central Mexico and surrounding areas. Physical Oceanography 46: 3069-3081. DOI: 10.1175/ JPO-D-16-0068.1

Reyes-Bonilla H. 2003. Coral reefs of the Pacific coast of Mexico. In: Cortés, J. (Ed.). Latin American Coral Reefs. Elsevier, pp. 331-349. DOI: 10.1016/B978-044451388-5/50015-1

Reyes-Ramírez, H., A. Tripp-Valdez, F. R. Elorriaga-Verplancken, A. Piñón-Gimate, M. J. Zetina Rejón & F. Galván-Magaña. 2022. Feeding guilds among batoids in the northwest coast of the Baja California Sur, Mexico. Marine Ecology. DOI: 10.1111/maec.12728

Sampson, L., F. Galván-Magaña, R. De Silva-Dávila, S. Aguíñiga-García & J. B. O’Sullivan. 2010. Diet and trophic position of the devil rays Mobula thurstoni and Mobula japanica as inferred from stable isotope analysis. Journal of the Marine Biological Association of the United Kingdom 90: 969-976. DOI: 10.1017/S0025315410000548

Smith, V. H. 2006. Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment. Limnology and Oceanography 51: 377-384. DOI: 10.4319/lo.2006.51.1_ part_2.037

Tennenbaum, S. & R. E. Ulanowicz. 1988. Growth and development: Ecosystems phenomenology. Estuaries 11 (1): 73. DOI: 10.2307/1351721

Ulanowicz, R., 1986. Growth and Development: Ecosystems Phenomenology. Springer, New York. 203 p.

Ulanowicz, R. 1997. Ecology, the Ascendent perspective. Complexity in Ecological Systems Series. Columbia University Press, New York. 201 p.

Ulanowicz, R. & Ch. Puccia. 1990. Mixed trophic impacts in ecosystems. Ceonoces 5: 7-16.

Walters, C., V. Christensen & D. Pauly. 1997. Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Review in Fish Biology and Fisheries 7: 139-172. DOI: 10.1023/A:1018479526149

Downloads

Published

2023-05-02

How to Cite

Hermosillo-Nuñez , B. B. ., Calderón-Aguilera, L. E., Rodríguez-Zaragoza, F. A., & Capul-Magaña, A. L. (2023). Trophic network structure and dynamics simulations in the coral ecosystem of Yelapa, Mexican Pacific. HIDROBIOLÓGICA, 33(2). Retrieved from https://hidrobiologica.izt.uam.mx/hidrobiologica/index.php/revHidro/article/view/1741

Issue

Section

Artículos

Most read articles by the same author(s)