Biodegradación de antibióticos por desnitrificación y efectos sobre la fisiología, cinética y comunidades microbianas desnitrificantes

Biodegradación de antibióticos y sus efectos en la desnitrificación

Authors

  • Yeny Banda-Soriano
  • Omar Oltehua López
  • Anne-Claire Texier
  • Flor de María Cuervo López

Keywords:

Genes desnitrificantes, genes de resistencia a antibióticos, mineralización, oxidación de antibióticos, reducción de nitrato

Abstract

Antecedentes. La contaminación del agua por nitrato y antibióticos ha ido creciendo a lo largo de los años, por lo que el proceso desnitrificante puede ser una buena alternativa para la eliminación simultánea de ambos compuestos. Objetivo. Mostrar el papel de la desnitrificación en la eliminación de antibióticos, así como los efectos de estos compuestos sobre la fisiología y cinética del proceso respiratorio, los genes y las poblaciones microbianas desnitrificantes. Resultados. Existen estudios sobre la eliminación de diferentes antibióticos bajo condiciones desnitrificantes, sin embargo, en la mayoría de los trabajos, el destino de la materia carbonada y nitrogenada consumida se desconoce. Antibióticos como las sulfonamidas y tetraciclinas provocan efectos negativos sobre el proceso desnitrificante al disminuir la eficiencia de eliminación de nitrato, su velocidad de consumo y propiciar la acumulación de nitrito. Se reportaron géneros desnitrificantes como Thauera y Pseudomonas como resistentes y/o tolerantes ante la presencia de diferentes antibióticos pertenecientes a las fluoroquinolonas, macrólidos, tetraciclinas y β-lactámicos, así como mezclas de éstos. La disminución de la abundancia y expresión génica de genes que participan en la desnitrificación como nirS y nosZ, fue observada en presencia de sulfonamidas, efecto que podría causar la acumulación de nitrito y óxido nitroso, ocasionando un posible cuello de botella en el proceso desnitrificante. En microorganismos desnitrificantes expuestos a antibióticos han sido detectados genes de resistencia a antibióticos, los cuales podrían actuar como mecanismos de defensa ante su presencia. Conclusiones. La información contenida en la presente revisión contribuye al conocimiento sobre el proceso desnitrificante, proponiendo su uso para llevar a cabo una eliminación más eficiente y estable de nitrato y antibióticos presentes en aguas contaminadas.

Downloads

Download data is not yet available.

References

Afsa, S., K. Hamden, P.A. Lara Martin & H.B. Mansour. 2020. Occurrence of 40 pharmaceutically active compounds in hospital and urban wastewaters and their contribution to Mahdia coastal seawater contamination. Environmental Science and Pollution Research 27(2):1941-1955. DOI:10.1007/s11356-019-06866-5

Ahmad, M., M. Vithanage, K. Kim, J.S. Cho, Y.H. Lee, Y.K. Joo, S.S. Lee & Y.S. Ok. 2014. Inhibitory effect of veterinary antibiotics on denitrification in groundwater: a microcosm approach. The Scientific World Journal 2014(879831):7. DOI:10.1155/2014/879831

Ahmadi, M., H.R. Motlagh, N. Jaafarzadeh, A. Mostoufi, R. Saeedi, G. Barzegar & S. Jorfi. 2017. Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite. Journal of environmental management 186:55-63. DOI:10.1016/j.jenvman.2016.09.088

Airong, Y., L. You & Y. Jian. 2005. Denitrification of a newly isolated Bacillus strain W2 and its application in aquaculture. Wei Sheng wu xue za zhi 25(3):77-81.

Amorim, C.L., A.S. Maia, R.B. Mesquita, A.O. Rangel, M.C. van Loosdrecht, M.E. Tiritan & P.M. Castro. 2014. Performance of aerobic granular sludge in a sequencing batch bioreactor exposed to ofloxacin, norfloxacin and ciprofloxacin. Water research 50:101-113. DOI:10.1016/j.watres.2013.10.043

Amouei, A., H. Asgharnia, H. Fallah, H. Faraji, R. Barari & D. Naghipour. 2015. Characteristics of effluent wastewater in hospitals of Babol University of Medical Sciences, Babol, Iran. Health Scope 4(2):e23222. DOI:10.17795/jhealthscope-23222

An, Y. & X. Qin. 2018. Effects of sulfamethoxazole on the denitrifying process in anoxic activated sludge and the responses of denitrifying microorganisms. Water Science and Technology 78(5):1228-1236. DOI:10.2166/wst.2018.394

Ansari, A.A., G.S. Singh, G.R. Lanza & W. Rast. 2010. Eutrophication: causes, consequences and control (Vol. 1). Springer Science & Business Media. 394 p.

Ávila, J.P. & A.C. Sansores. 2003. Fuentes principales de nitrógeno de nitratos en aguas subterráneas. Ingeniería 7(2):47-54.

Banda, Y., A.C. Texier & F.M. Cuervo-López. 2022. Physiological and kinetic evaluation of ampicillin oxidation as unique electron source by a denitrifying sludge. Journal of Chemical Technology & Biotechnology 97(6):1416-1423. DOI:10.1002/jctb.7014

Barbieri, M., J. Carrera, C. Ayora, X. Sánchez-Vila, T. Licha, K. Nödler, V. Osorio, S. Pérez, M. Köck-Schulmeyer, M. López de Alda & D. Barceló. 2012. Formation of diclofenac and sulfamethoxazole reversible transformation products in aquifer material under denitrifying conditions: batch experiments. Science of the Total Environment 426:256-263. DOI:10.1016/j.scitotenv.2012.02.058

Behera, S.K., H.W. Kim, J.E. Oh & H.S. Park. 2011. Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Science of the total environment 409(20):4351-4360. DOI:10.1016/j.scitotenv.2011.07.015

Boxall, A.B. 2004. The environmental side effects of medication: How are human and veterinary medicines in soils and water bodies affecting human and environmental health?. EMBO reports 5(12):1110-1116. DOI:10.1038/sj.embor.7400307

Boyer, T.H. 2014. Physical-chemical processes for nitrogen removal. In: S. Ahuja (ed.). Comprehensive Water Quality and Purification. Elsevier Inc, pp. 163-195.

Brauner, A., O. Fridman, O. Gefen & N.Q. Balaban. 2016. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nature Reviews Microbiology 14(5):320-330. DOI:10.1038/ nrmicro.2016.34

Brown, K.D., J. Kulis, B. Thomson, T.H. Chapman & D.B. Mawhinney. 2006. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Science of the Total Environment 366(2-3):772-783. DOI:10.1016/j.scitotenv.2005.10.007

Bruchmann, S., A. Dötsch, B. Nouri, I.F. Chaberny & S. Häussler. 2013. Quantitative contributions of target alteration and decreased drug accumulation to Pseudomonas aeruginosa fluoroquinolone resistance. Antimicrobial agents and chemotherapy 57(3):1361-1368. DOI:10.1128/AAC.01581-12

Camargo, J A. & A. Alonso. 2007. Contaminación por nitrógeno inorgánico en los ecosistemas acuáticos: problemas medioambientales, criterios de calidad del agua, e implicaciones del cambio climático. Ecosistemas 16(2)98:110.

Cao, D.Q., W.Y. Yang, Z. Wang & X.D. Hao. 2019. Role of extracellular polymeric substance in adsorption of quinolone antibiotics by microbial cells in excess sludge. Chemical Engineering Journal 370:684-694. DOI:10.1016/j.cej.2019.03.230

Chagas, T.P.G., L.M. Seki, J.C. Cury, J.A.L. Oliveira, A.M.R. Dávila, D.M. Silva & M.D. Asensi. 2011. Multiresistance, β-lactamase-encoding genes and bacterial diversity in hospital wastewater in Rio de Janeiro, Brazil. Journal of applied microbiology 111(3):572-581. DOI:10.1111/j.1365-2672.2011.05072.x

Chang, X., M.T. Meyer, X. Liu, Q. Zhao, H. Chen, J.A. Chen, Z. Qiu, L. Yang, J. Cao & W. Shu. 2010. Determination of antibiotics in sewage from hospitals, nursery and slaughterhouse, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China. Environmental pollution 158(5):1444-1450. DOI:10.1016/j. Envpol.2009.12.034

Chen, Q.Q., W.D. Wu, Z.Z. Zhang, J.J. Xu & R.C. Jin. 2017. Inhibitory effects of sulfamethoxazole on denitrifying granule properties: short-and long-term tests. Bioresource technology 233:391-398. DOI:10.1016/j.biortech.2017.02.102

Chen, J., Y. Yang, Y. Liu, M. Tang, R. Wang, H. Hu, H. Wang, P. Yang, H. Xue & X. Zhang. 2020. Effects caused by chlortetracycline and oxytetracycline in anaerobic digestion treatment of real piggery wastewater: treatment efficiency and bacterial diversity. International Journal of Hydrogen Energy 45(15):9222-9230. DOI:10.1016/j.ijhydene.2020.01.138

Cheng, D., H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, X. Zhang, S. Varjani & Y. Liu. 2020. Feasibility study on a new pomelo peel derived biochar for tetracycline antibiotics removal in swine wastewater. Science of the Total Environment 720:137662. DOI:10.1016/j.scitotenv.2020.137662

Cuervo-López, F.M., S. Martínez-Hernández, A.C. Texier & J. Gómez. 2009. Principles of denitrifying processes. In: Cervantes F.J. (ed.). Environmental Technologies to Treat Nitrogen Pollution. IWA Publishing, pp: 41-66.

Cuervo-López, F.M., F. Martínez, M. Gutiérrez-Rojas, R.A. Noyola & J. Gómez. 1999. Effect of nitrogen loading rate and carbon source on denitrification and sludge settleability in upflow anaerobic sludge blanket (UASB) reactors. Water Science and Technology 40(8):123-130. DOI:10.1016/S0273-1223(99)00617-4

Cuong, N.V., P. Padungtod, G. Thwaites & J.J. Carrique-Mas. 2018. Antimicrobial usage in animal production: a review of the literature with a focus on low-and middle-income countries. Antibiotics 7(3):75. DOI:10.3390/antibiotics7030075

De la Monte, S.M., A. Neusner, J. Chu & M. Lawton. 2009. Epidemiological trends strongly suggest exposures as etiologic agents in the pathogenesis of sporadic Alzheimer’s disease, diabetes mellitus, and non-alcoholic steatohepatitis. Journal of Alzheimer’s Disease 17(3):519-529. DOI:10.3233/JAD-2009-1070

Ding, H., Y. Wu, B. Zou, Q. Lou, W. Zhang, J. Zhong, L. Lu & G. Dai. 2016. Simultaneous removal and degradation characteristics of sulfonamide, tetracycline, and quinolone antibiotics by laccase-mediated oxidation coupled with soil adsorption. Journal of hazardous materials 307:350-358. DOI:10.1016/j.jhazmat.2015.12.062

Dorival-García, N., A. Zafra-Gómez, A. Navalón, J. González-López, E. Hontoria & J.L. Vílchez. 2013. Removal and degradation characteristics of quinolone antibiotics in laboratory-scale activated sludge reactors under aerobic, nitrifying and anoxic conditions. Journal of environmental management 120:75-83. DOI:10.1016/j.jenvman.2013.02.007

Elefsiniotis, P. & D. Li. 2006. The effect of temperature and carbon source on denitrification using volatile fatty acids. Biochemical Engineering Journal 28(2):148-155. DOI:10.1016/j.bej.2005.10.004

Etebu, E. & I. Arikekpar. 2016. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. International Journal of Applied Microbiology and Biotechnology Research 4(2016):90-101.

Fan, N.S., Y.H. Bai, Q.Q. Chen, Y.Y. Shen, B.C. Huang & R.C. Jin. 2020. Deciphering the toxic effects of antibiotics on denitrification: Process performance, microbial community and antibiotic resistance genes. Journal of environmental management 262:110375. DOI:10.1016/j. Jenvman.2020.110375

Feng, L., J. Yang, H. Yu, Z. Lan, X. Ye, G. Yang, Q. Yang & J. Zhou. 2020. Response of denitrifying community, denitrification genes and antibiotic resistance genes to oxytetracycline stress in polycaprolactone supported solid-phase denitrification reactor. Bioresource technology 308:123274. DOI:10.1016/j.biortech.2020.123274

Fernández-Nava, Y., E. Maranon, J. Soons & L. Castrillón. 2008. Denitrification of wastewater containing high nitrate and calcium concentrations. Bioresource Technology 99(17):7976-7981. DOI:10.1016/j. Biortech.2008.03.048

Fewtrell, L. 2004. Drinking-water nitrate, methemoglobinemia, and global burden of disease: a discussion. Environmental health perspectives 112(14):1371-1374. DOI:10.1289/ehp.7216

Fraqueza, M.J. 2015. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages. International Journal of Food Microbiology 212:76-88. DOI:10.1016/j.ijfoodmicro.2015.04.035

Gambhir, R.S., V. Kapoor, A. Nirola, R. Sohi & V. Bansal. 2012. Water pollution: Impact of pollutants and new promising techniques in purification process. Journal of Human Ecology 37(2):103-109. DOI:10.1 080/09709274.2012.11906453

Gao, P., D. Mao, Y. Luo, L. Wang, B. Xu & L. Xu. 2012. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water research 46 (7): 2355-2364. DOI:10.1016/j.watres.2012.02.004

Gui, M., Q. Chen & J. Ni. 2017. Effect of sulfamethoxazole on aerobic denitrification by strain Pseudomonas stutzeri PCN-1. Bioresource technology 235:325-331. DOI:10.1016/j.biortech.2017.03.131

Hancock, R.E. & D.P. Speert. 2000. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug resistance updates 3(4):247-255. DOI:10.1054/drup.2000.0152

Hassan, M., G. Zhu, Z. Yang, Y. Lu, Y. Lang, L. Gong & H. Shan. 2020. Effect of the C/N Ratio on Biodegradation of Ciprofloxacin and Denitrification from Low C/N Wastewater as Assessed by a Novel 3D-BER System. Sustainability 12(18):7611. DOI:10.3390/su12187611

Hoff, R. & T.B. Kist. 2009. Analysis of sulfonamides by capillary electrophoresis. Journal of separation science 32(5-6):854-866. DOI:10.1002/jssc.200800738

Hou, L., G. Yin, M. Liu, J. Zhou, Y. Zheng, J. Gao, H. Zong, Y. Yang, L. Gao & C. Tong. 2015. Effects of sulfamethazine on denitrification and the associated N2O release in estuarine and coastal sediments. Environmental science & technology 49(1):326-333. DOI:10.1021/ es504433r

Hou, L., J. Li, Z. Zheng, Q. Sun, Y. Liu & K. Zhang. 2019a. Cultivating river sediments into efficient denitrifying sludge for treating municipal wastewater. Royal Society open science 6(9):190304. DOI:10.1098/ rsos.190304

Hou, J., Z. Chen, J. Gao, Y. Xie, L. Li, S. Qin, Q. Wang, D. Mao & Y. Luo. 2019b. Simultaneous removal of antibiotics and antibiotic resistance genes from pharmaceutical wastewater using the combinations of up-flow anaerobic sludge bed, anoxic-oxic tank, and advanced oxidation technologies. Water research 159:511-520. DOI:10.1016/j. Watres.2019.05.034

Hu, J., J. Zhou, S. Zhou, P. Wu & Y.F. Tsang. 2018. Occurrence and fate of antibiotics in a wastewater treatment plant and their biological effects on receiving waters in Guizhou. Process Safety and Environmental Protection 113:483-490. DOI:10.1016/j.psep.2017.12.003

Islas-García, I., C. Romo-Gómez & F.M. Cuervo-López. 2017. Ampicillin mineralization by denitrifying process: kinetic and metabolic effects. Applied biochemistry and biotechnology 183(3):1049-1061. DOI:10.1007/s12010-017-2483-7

Jalal, S., O. Ciofu, N. Høiby, N. Gotoh & B. Wretlind. 2000. Molecular mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrobial agents and chemotherapy 44(3):710-712. DOI:10.1128/AAC.44.3.710- 712.2000

Katipoglu-Yazan, T., C. Merlin, M.N. Pons, E. Ubay-Cokgor & D. Orhon. 2016. Chronic impact of sulfamethoxazole on the metabolic activity and composition of enriched nitrifying microbial culture. Water research 100:546-555. DOI:10.1016/j.watres.2016.05.043

Kim, S., P. Eichhorn, J.N. Jensen, A.S. Weber & D.S. Aga. 2005. Removal of antibiotics in wastewater: effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process. Environmental science & technology 39(15):5816-5823. DOI:10.1021/es050006u

Kimosop, S.J., Z.M. Getenga, F. Orata, V.A. Okello & J.K. Cheruiyot. 2016. Residue levels and discharge loads of antibiotics in wastewater treatment plants (WWTPs), hospital lagoons, and rivers within Lake Victoria Basin, Kenya. Environmental Monitoring and Assessment 188(9):1-9. DOI:10.1007/s10661-016-5534-6

Knowles, R. 1982. Denitrification. Microbiological reviews 46(1):43-70.

Kovalakova, P., L. Cizmas, T.J. McDonal, B. Marsalek, M. Feng & V.K. Sharma. 2020. Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere 251:126351. DOI:10.1016/j.chemosphere.2020.126351

Kümmerer, K. 2009. Antibiotics in the aquatic environment–a review– part I. Chemosphere 75(4):417-434. DOI:10.1016/j.chemosphere.2008.11.086

Larios-Ortiz, L. 2009. Contaminación del agua por nitratos: significación sanitaria. Revista Archivo Médico de Camagüey 13(2):6.

Li, B. & T. Zhang. 2010. Biodegradation and adsorption of antibiotics in the activated sludge process. Environmental science & technology 44(9):3468-3473. DOI:10.1021/es903490h

Li, T., C. Liu, J. Lu, G.K. Gaurav & W. Chen. 2020. Determination of how tetracycline influences nitrogen removal performance, community structure, and functional genes of biofilm systems. Journal of the Taiwan Institute of Chemical Engineers 106:99-109 DOI:10.1016/j. Jtice.2019.10.004

Li, Z.L., R. Cheng, F. Chen, X. Q. Lin, X.J. Yao, B. Liang, C. Huang, K. Sun & A.J. Wang. 2021 Selective stress of antibiotics on microbial denitrification: inhibitory effects, dynamics of microbial community structure and function. Journal of Hazardous Materials 405:124366. DOI:10.1016/j.jhazmat.2020.124366

Liu, C., G. H. Rubæk, F. Liu & M. N. Andersen. 2015. Effect of partial root zone drying and deficit irrigation on nitrogen and phosphorus uptake in potato. Agricultural Water Management 159:66-76. DOI:10.1016/j. Agwat.2015.05.021

Liu, C., J. Xu, D.J. Lee, D. Yu & L. Liu. 2016. Denitrifying sulfide removal process on high-tetracycline wastewater. Bioresource technology 205:254-257. DOI:10.1016/j.biortech.2016.01.026

Liu, Z., P. Sun, S.G. Pavlostathis, X. Zhou & Y. Zhang. 2013. Inhibitory effects and biotransformation potential of ciprofloxacin under anoxic/anaerobic conditions. Bioresource technology 150:28-35. DOI:10.1016/j.biortech.2013.09.125

Luo, Y., W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, S. Liang & X.C. Wang. 2014. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the total environment 473:619-641. DOI:10.1016/j.scitotenv.2013.12.065

Ma, Y., X. Zheng, Y. Fang, K. Xu, S. He & M. Zhao. 2020. Autotrophic denitrification in constructed wetlands: Achievements and challenges. Bioresource Technology 123778. DOI:10.1016/j.biortech.2020.123778

Martínez, E., A.C. Texier, F.M. Cuervo-López & J. Gomez. 2017. Denitrification in the Presence of Chlorophenols: Progress and Prospects. In: Zhu, I. (ed.). Nitrification and Denitrification. Vol. 5. Intech Open, pp: 75-92.

Matějů, V., S. Čižinská, J. Krejčí & T. Janoch. 1992. Biological water denitrification—a review. Enzyme and microbial technology 14(3):170-183.

Miao, X.S., F. Bishay, M. Chen, C.D. Metcalfe. 2004. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environmental science & technology 38(13):3533-3541. DOI:10.1021/es030653q

Moraes, B.D.S., T.S.O. Souza & E. Foresti. 2012. Effect of sulfide concentration on autotrophic denitrification from nitrate and nitrite in vertical fixed-bed reactors. Process Biochemistry 47(9):1395-1401. DOI:10.1016/j.procbio.2012.05.008

Moreno, B., K. Soto & D. González. 2015. El consumo de nitrato y su potencial efecto benéfico sobre la salud cardiovascular. Revista chilena de nutrición 42(2):199-205. DOI:10.4067/S0717- 75182015000200013

Morita, Y., J. Tomida & Y. Kawamura. 2014. Responses of Pseudomonas aeruginosa to antimicrobials. Frontiers in microbiology 4:422. DOI:10.3389/fmicb.2013.00422

Mozumder, M.S.I. & M.D. Hossain. 2020. Interaction between Biological Nitrogen Removal Processes and Operating Parameters: A Review. Journal of Scientific Research 12(4):757-774. DOI:10.3329/jsr. V12i4.46092

Nabeela, F., A. Azizullah, R. Bibi, S. Uzma, W. Murad, S.K. Shakir, W. Ullah, M. Qasim & D.P. Häder. 2014. Microbial contamination of drinking water in Pakistan—a review. Environmental Science and Pollution Research 21(24):13929-13942. DOI:10.1007/s11356-014-3348-z

Oberoi, A.S., Y. Jia, H. Zhang, S.K. Khanal & H. Lu. 2019. Insights into the fate and removal of antibiotics in engineered biological treatment systems: a critical review. Environmental science & technology 53(13):7234-7264. DOI:10.1021/acs.est.9b01131

Perini, J.A.L., A.L. Tonetti, C. Vidal, C.C. Montagner & R.F.P. Nogueira. 2018. Simultaneous degradation of ciprofloxacin, amoxicillin, sulfathiazole and sulfamethazine, and disinfection of hospital effluent after biological treatment via photo-Fenton process under ultraviolet germicidal irradiation. Applied Catalysis B: Environmental 224:761- 771. DOI:10.1016/j.apcatb.2017.11.021

Qin, Q., X. Chen & J. Zhuang. 2015. The fate and impact of pharmaceuticals and personal care products in agricultural soils irrigated with reclaimed water. Critical Reviews in Environmental Science and Technology 45(13):1379-1408. DOI:10.1080/10643389.2014.955628

Rahman, M.M., J. Shan, P. Yang, X. Shang, Y. Xia & X. Yan. 2018. Effects of long-term pig manure application on antibiotics, abundance of antibiotic resistance genes (ARGs), anammox and denitrification rates in paddy soils. Environmental Pollution 240:368-377. DOI:10.1016/j.envpol.2018.04.135

Roose-Amsaleg, C., V. David, F. Alliot, E. Guigon, O. Crouzet & A.M. Laverman. 2021. Synergetic effect of antibiotic mixtures on soil bacterial N2 O-reducing communities. Environmental Chemistry Letters 19(2):873-1878. DOI:10.1007/s10311-020-01117-3

Ruan, Y., M.K. Awasthi, L. Cai, H. Lu, X. Xu & W. Li. 2020. Simultaneous aerobic denitrification and antibiotics degradation by strain Marinobacter hydrocarbonoclasticus RAD-2. Bioresource Technology 313:123609. DOI:10.1016/j.biortech.2020.123609

Semedo, M., B. Song, T. Sparrer & R.L. Phillips. 2018. Antibiotic effects on microbial communities responsible for denitrification and N2 O production in grassland soils. Frontiers in microbiology 9:2121. DOI:10.3389/fmicb.2018.02121

Shin, J., C. Rhee, J. Shin, H.M. Jang, S.G. Shin & Y.M. Kim. 2020 Determining the composition of bacterial community and relative abundance of specific antibiotics resistance genes via thermophilic anaerobic digestion of sewage sludge. Bioresource Technology 311:123510. DOI:10.1016/j.biortech.2020.123510

Suarez, S., J.M. Lema & F. Omil. 2010. Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions. Water research 44(10):3214-3224. DOI:10.1016/j.watres.2010.02.040

Sun, M., M. Ye, K. Liu, A.P. Schwab, M. Liu, J. Jiao, Y. Feng, J. Wan, D. Tian, J. Wu, H. Li, F. Hu & X. Jiang. 2017. Dynamic interplay between microbial denitrification and antibiotic resistance under enhanced anoxic denitrification condition in soil. Environmental Pollution 222:583- 591. DOI:10.1016/j.envpol.2016.10.015

Tong, X., X. Wang, X. He, K. Xu & F. Mao. 2019. Effects of ofloxacin on nitrogen removal and microbial community structure in constructed wetland. Science of the Total Environment 656:503-511. DOI:10.1016/j.scitotenv.2018.11.358

Tsiaka, P., V. Tsarpali, I. Ntaikou, M.N. Kostopoulou, G. Lyberatos & S. Dailianis. 2013. Carbamazepine-mediated pro-oxidant effects on the unicellular marine algal species Dunaliella tertiolecta and the hemocytes of mussel Mytilus galloprovincialis. Ecotoxicology 22(8):1208- 1220. DOI:10.1007/s10646-013-1108-3

Vicente, D. & E. Pérez-Trallero. 2010. Tetraciclinas, sulfamidas y metronidazol. Enfermedades infecciosas y microbiología clínica 28(2):122- 130. DOI:10.1016/j.eimc.2009.10.002

Wang, Y., Y. Zhao, M. Ji & H. Zhai. 2015.Nitrification recovery behavior by bio-accelerators in copper-inhibited activated sludge system. Bioresource technology 192:748-755. DOI:10.1016/j.biortech.2015.06.015

Watkinson, A.J., E.J. Murby, D.W. Kolpin & S.D. Costanzo. 2009. The occurrence of antibiotics in an urban watershed: from wastewater to drinking water. Science of the total environment 407(8):2711- 2723. DOI:10.1016/j.scitotenv.2008.11.059

WHO (World Health Organization). 2019. Drinkig water. Available online at: https://www.who.int/news-room/fact-sheets/detail/drinking-water (downloaded May 20, 2021).

Wu, D., G. Chen, X. Zhang, K. Yang & B. Xie. 2017. Change in microbial community in landfill refuse contaminated with antibiotics facilitates denitrification more than the increase in ARG over long-term. Scientific reports 7(1):1-9. DOI:10.1038/srep41230

Xia, S., R. Jia, F. Feng, K. Xie, H. Li, D. Jing & X. Xu. 2012. Effect of solids retention time on antibiotics removal performance and microbial communities in an A/O-MBR process. Bioresource technology 106:36-43. DOI:10.1016/j.biortech.2011.11.112

Xiang, Q., D. Zhu, Q.L. Chen, P. O’Connor, X.R. Yang, M. Qiao & Y.G. Zhu. 2019. Adsorbed sulfamethoxazole exacerbates the effects of polystyrene (∼ 2 μm) on gut microbiota and the antibiotic resistome of a soil collembolan. Environmental science & technology 53(21):12823- 12834. DOI:10.1021/acs.est.9b04795

Yin, G., L. Hou, M. Liu, Y. Zheng, X. Li, X. Lin, J. Gao, X. Jiang, R. Wang & C. Yu. 2017. Effects of multiple antibiotics exposure on denitrification process in the Yangtze Estuary sediments. Chemosphere 171:118- 125. DOI:10.1016/j.chemosphere.2016.12.068

Yu, H., X. Ye, L. Feng, J. Yang, Z. Lan, C. Ren, W. Zhu, G. Yang & J. Zhou. 2021. Dynamics of denitrification performance and denitrifying community under high-dose acute oxytetracycline exposure and various biorecovery strategies in polycaprolactone-supported solid-phase denitrification. Journal of Environmental Management 279:111763. DOI:10.1016/j.jenvman.2020.111763

Zhang, K., J. Gu, X. Wang, X. Zhang, T. Hu & W. Zhao. 2019. Analysis for microbial denitrification and antibiotic resistance during anaerobic digestion of cattle manure containing antibiotic. Bioresource technology 291:121803. DOI:10.1016/j.biortech.2019.121803

Zhang, L., F. Sun, D. Wu, W. Yan & Y. Zhou. 2020a. Biological conversion of sulfamethoxazole in an autotrophic denitrification system. Water Research 185:116156. DOI:10.1016/j.watres.2020.116156

Zhang, X., G. Chen, S. Zhong, T. Wang, M. Ji, X. Wu & X. Zhang. 2020b. Antibiotic-induced role interchange between rare and predominant bacteria retained the function of a bacterial community for denitrifying quinoline degradation. Journal of Applied Microbiology 129(6):1598-1608. DOI:10.1111/jam.14755

Zhang, R., X. Xu, D. Jia, Y. Lyu, J. Hu, Q. Chen, W. Sun. 2022. Sediments alleviate the inhibition effects of antibiotics on denitrification: Functional gene, microbial community, and antibiotic resistance gene analysis. Science of The Total Environment 804:150092. DOI:10.1016/j.scitotenv.2021.150092

Zhao, R., J. Feng, J. Huang, X. Li & B. Li. 2021. Reponses of microbial community and antibiotic resistance genes to the selection pressures of ampicillin, cephalexin and chloramphenicol in activated sludge reactors. Science of the Total Environment 755:142632. DOI:10.1016/j.scitotenv.2020.142632

Zheng, J., S. Wang, A. Zhou, B. Zhao, J. Dong, X. Zhao, P. Li & X. Yue. 2020. Efficient elimination of sulfadiazine in an anaerobic denitrifying circumstance: Biodegradation characteristics, biotoxicity removal and microbial community analysis. Chemosphere 252:126472. DOI:10.1016/j.chemosphere.2020.126472

Zhi, S., J. Zhou, F. Yang, L. Tian & K. Zhang. 2018. Systematic analysis of occurrence and variation tendency about 58 typical veterinary antibiotics during animal wastewater disposal processes in Tianjin, China. Ecotoxicology and environmental safety 165:376-385. DOI:10.1016/j.ecoenv.2018.08.101

Zhou, X., M. Qiao, F.H. Wang & Y.G. Zhu. 2017. Use of commercial organic fertilizer increases the abundance of antibiotic resistance genes and antibiotics in soil. Environmental Science and Pollution Research 24(1):701-710. DOI:10.1007/s11356-016-7854-z

Zuccato, E., S. Castiglioni, R. Bagnati, M. Melis & R. Fanelli. 2010. Source, occurrence and fate of antibiotics in the Italian aquatic environment. Journal of hazardous materials 179(1-3):1042-1048. DOI:10.1016/j.jhazmat.2010.03.110

Published

2022-08-24

How to Cite

Banda-Soriano, Y. ., Oltehua López, O. ., Anne-Claire Texier, & Cuervo López, F. de M. . (2022). Biodegradación de antibióticos por desnitrificación y efectos sobre la fisiología, cinética y comunidades microbianas desnitrificantes: Biodegradación de antibióticos y sus efectos en la desnitrificación. HIDROBIOLÓGICA, 32(1), 59–70. Retrieved from https://hidrobiologica.izt.uam.mx/hidrobiologica/index.php/revHidro/article/view/1657

Issue

Section

Material suplementario

Most read articles by the same author(s)