Prospective observations on benthic marine diatoms taxocoenoses in a port exposed to mining residues
Diatomeas bentónicas en un ambiente marino contaminado
Keywords:
Bacillariophyta, Gulf of California, heavy metals, anthropogenic impactAbstract
Background. A recent interest has emerged for studying benthic marine diatoms (BMD) whose environment is influenced by potentially toxic elements (PTE), mainly metals that can alter their taxocoenoses parameters and cause deformities in the diatom frustules. Objective. To explore which particular characteristics may represent a response by BMD to PTE in environments polluted by mining residues, using the typical structure of the diatom taxocoenoses as reference, i.e., floristics, species richness, and diversity and dominance, as well as frequency of deformed frustules. Methods. Rock and sediment samples were taken in May 2015 and January 2016 at Santa Rosalía, BCS, a beach contaminated by mining waste. Results. Between 1 and 7.6% of deformed valves per site were recorded. This frequency of deformed frustules suggests the impact of contamination by EPT in the area. Diversity values of H´ between 1.1 and 4.3 were recorded, which are within the typical intervals of diversity for uncontaminated sites, although EPT concentrations such as Cu 3760 mg kg-1, Zn 2294 mg kg-1, Ni 401 mg kg-1, Pb 216 mg kg-1, recorded in the area exceed the mid-range effect values, indicating that 50% of the biota present would be affected. Conclusions. The high abundance of certain diatom taxa may indicate their ability to resist or tolerate PTE, while those exhibiting deformed frustules could be considered sensitive taxa
Downloads
References
Belando, M.D., A. Marín, M. Aboal, A. J. García-Fernández & L. Marín-Guirao. 2017. Combined in situ effects of metals and nutrients on marine biofilms: Shifts in the diatom assemblage structure and biological traits. Science of the Total Environment 574 (39), 81-9. Doi: https://doi.org/10.1016/j.scitotenv.2016.08.197
Cattaneo, A., Y. Couillard, S. Wunsam & Courcelles M. 2004. Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault (Québec, Canada). Journal of Paleolimnology 32(2),163-75. Doi: https://doi.org/10.1023/B:JOPL.0000029430.78278.a5
Cunningham, L., B. Raymond, I. Snape & M. J. Riddle. 2005. Benthic diatom communities as indicators of anthropogenic metal contamination at Casey Station, Antarctica. Journal of Paleolimnology 33 (4), 499-513. Doi: https://doi.org/10.1007/s10933-005-0814-0
Cunningham, L., J.S. Stark, I. Snape, A. McMinn & M.J. Riddle. 2003. Effects of metal and petroleum hydrocarbon contamination on benthic diatom communities near Casey station, Antarctica: an experimental approach. Journal of Phycology 39 (3), 490-503. Doi: https://doi.org/10.1046/j.1529-8817.2003.01251.x
Desrosiers, C., J. Leflaive, A. Eulin & L. Ten-Hage. 2013. Bioindicators in marine waters: Benthic diatoms as a tool to assess water quality from eutrophic to oligotrophic coastal ecosystems. Ecological Indicators 32, 25-34. Doi: https://doi.org/10.1016/j.ecolind.2013.02.021
Dickman, M. 1998. Benthic marine diatom deformities associated with contaminated sediments in Hong Kong. Environment International 24 (7), 749-59. Doi: https://doi.org/10.1016/S0160-4120(98)00060-9
Falasco, E., F. Bona, G. Badino, L. Hoffmann & L. Ector. 2009. Diatom teratological forms and environmental alterations: a review. Hydrobiologia 623 (1), 1-35. Doi: https://doi.org/10.1007/s10750-008-9687-3
Gautam, S., L.K. Pandey, V. Vinayak & A. Arya. 2017. Morphological and physiological alterations in the diatom Gomphonema pseudoaugur due to heavy metal stress. Ecology Indicator 72, 67-76. Doi: https://doi.org/10.1016/j.ecolind.2016.08.002
Gómez, N. & M. Licursi. 2001. The Pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina. Aquatic Ecology 35 (2), 173-81.
doi.org/10.1023/A:1011415209445
Hustedt, F. 1991. Die Kieselalgen Deutschlands, Österreichs und der Schweiz: unter Berücksichtigung der übrigen Länder Europas sowie der angrenzenden Meeresgebiete. 1. Reprint der Ausg. von 1930. Campaign, Ill: Koeltz [u.a.],. 920 p. (Die Kieselalgen Deutschlands, Österreichs und der Schweiz / von Friedrich Hustedt).
Ivorra, J., N. Hettelaar, G.M.J. Tubbing, M.H.S. Kraak, S. Sabater & W. Admiraal. 1999. Translocation of microbenthic algal assemblages used for in situ analysis of metal pollution in rivers. Archives of Environmental Contamination and Toxicology 37 (1),19-28. Doi: https://doi.org/10.1007/s002449900485
Jonathan M.P., E. Shumilin, G.M. Rodríguez-Figueroa, P.F. Rodriguez-Espinosa & SB. Sujitha. 2016. Potential toxicity of chemical elements in beach sediments near Santa Rosalía copper mine, Baja California Peninsula, Mexico. Estuarine, Coastal and Shelf Science 180, 91-6. Doi: https://doi.org/10.1016/j.ecss.2016.06.015
López-Fuerte, F.O., D.A. Siqueiros-Beltrones & J.N. Navarro. 2010. Benthic diatoms associated with mangrove environments in the northwest region of Mexico. Conabio- UABCS-IPN, La Paz,. 206 p.
Magurran A.E. 1988. Ecological diversity and its measurement. Princeton, N.J: Princeton University Press, 179 p.
Marmolejo-Rodríguez, A.J., M.A. Sánchez-Martínez, J.A. Romero-Guadarrama, A. Sánchez-González & V.R. Magallanes-Ordóñez. 2011. Migration of As, Hg, Pb, and Zn in arroyo sediments from a semiarid coastal system influenced by the abandoned gold mining district at El Triunfo, Baja California Sur, Mexico. J. Environmental Monitoring and Assessment 13 (8), 21-82. Doi: https://doi.org/10.1039/c1em10058k
Martínez, Y.J. & D.A. Siqueiros-Beltrones. 2018. New floristic records of benthic diatoms (Bacillariophyceae) from the Gulf of California. Hidrobiológica, 28 (1): 141-145. DOI: 10.24275/uam/izt/dcbs/hidro/2018v28n1/Siqueiros
Martínez, Y.J., D.A. Siqueiros Beltrones & A.J. Marmolejo Rodríguez. 2021. Response of Benthic Diatom Assemblages to Contamination by Metals in a Marine Environment. Journal of Marine Science and Engineering 9, 443. https://doi.org/10.3390/jmse9040443
Medley, C.N. & W.H. Clements 1998. Responses of diatom communities to heavy metals in streams: the influence of longitudinal variation. Ecological Applications 8 (3), 631-44. Doi: https://doi.org/10.1890/1051-0761(1998)008[0631:RODCTH]2.0.CO,2
Morin, S., A. Cordonier, I. Lavoie, A. Arini, S. Blanco, T.T.Duong, 2012. Consistency in Diatom Response to Metal-Contaminated Environments. In: Guasch H, Ginebreda A, Geiszinger A, editor(s). Emerging and Priority Pollutants in Rivers [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg. 117-46. Doi: https://doi.org/10.1007/978-3-642-25722-3_5
Pandey, L.K., .C S. Yogesh, P. Jihae, C. Soyeon, L. Hojun, L. Jie & H. Taejun. 2018. Evaluating features of periphytic diatom communities as biomonitoring tools in fresh, brackish and marine waters. Aquatic Toxicology 19 (4), 67-77. doi.org/10.1016/j.aquatox.2017.11.003.
Penalta-Rodríguez, M.E. & M.C. López-Rodríguez. 2007. Diatomeas y calidad el agua de los ríos del Macizo Central Gallego (Ourence, N.O. España) mediante la aplicación de índices diatomológicos. Limnetica 26: 351-358. ISSN: 0213-8409
Petrov, A., E. Nevrova, A. Terletskaya, M. Milyukin & V. Demchenko. 2010. Structure and taxonomic diversity of benthic diatom assemblage in a polluted marine environment (Balaklava Bay, Black Sea). Polish Botanical Journal 55 (1): 183–197. ISSN 2084-4352.
Potapova, M., N. Desianti & M. Enache. 2016. Potential effects of sediment contaminants on diatom assemblages in coastal lagoons of New Jersey and New York States. Marine Pollution Bulletin 107 (2), 453-8. Doi: https://doi.org/10.1016/j.marpolbul.2016.01.028
Rodríguez-Figueroa, G.M., E. Shumilin & I. Sánchez-Rodríguez. 2009. Heavy metal pollution monitoring using the brown seaweed Padina durvillaei in the coastal zone of the Santa Rosalía mining region, Baja California Peninsula, Mexico. Journal of Applied Phycology 21 (1), 19-26. Doi: https://doi.org/10.1007/s10811-008-9346-0
Rubino, F., T. Cibic, M. Belmonte & M. Rogelja. 2016. Microbenthic community structure and trophic status of sediments in the Mar Piccolo of Taranto (Mediterranean, Ionian Sea). Environmental Science and Pollution Research 23 (13), 12624-44. Doi: https://doi.org/10.1007/s11356-015-5526-z
Salomoni, S.E., O. Rocha, V.L. Callegaro & E.A. Lobo. 2006. Epilithic diatoms as indicators of water quality in the Gravataí River, Rio Grande do Sul, Brazil. Hydrobiologia 559 (1), 233-46. Doi: https://doi.org/10.1007/s10750-005-9012-3
Schmidt, A., M. Schmidt, F. Fricke, H. Heiden, O. Muller & F. Hustedt. 1874-1959. Atlas der diatomaceenkunde. Heft 1- 120. Reisland, Leipzig.,208 p.
Shumilin, E.N., G. Rodríguez-Figueroa, O.M. Bermea, E.L. Baturina, E. Hernández & G.D.R. Meza. 2000. Anomalous Trace Element Composition of Coastal Sediments near the Copper Mining District of Santa Rosalía, Peninsula of Baja California, Mexico. Bulletin of Environmental Contamination and Toxicology 65 (2), 261-8. Doi: https://doi.org/10.1007/s0012800123
Shumilin, E., V. Gordeev, G. R. Figueroa, L. Demina & K. Choumiline. 2011. Assessment of Geochemical Mobility of Metals in Surface Sediments of the Santa Rosalia Mining Region, Western Gulf of California. Archives of Environmental Contamination and Toxicology 60 (1), 8-25. Doi: https://doi.org/10.1007/s00244-010-9532-3
Shumilin, E., G. Rodríguez-Figueroa, D. Sapozhnikov, Y. Sapozhnikov & K. Choumiline. 2012. Anthropogenic and Authigenic Uranium in Marine Sediments of the Central Gulf of California Adjacent to the Santa Rosalía Mining Region. Archives of Environmental Contamination and Toxicology 63 (3), 309-22. Doi: https://doi.org/10.1007/s00244-012-9776-1
Shumilin, E., Á. R Jiménez-Illescas & S. López-López. 2013. Anthropogenic Contamination of Metals in Sediments of the Santa Rosalía Harbor, Baja California Peninsula. Bulletin of Environmental Contamination and Toxicology 90 (3), 333-7. https://doi.org/10.1007/s00128-012-0923-1
Siqueiros-Beltrones, D.A. 1988. Diatomeas bentónicas de la Laguna Figueroa, Baja California. Ciencias Marinas 14 (2), 85-112. http://dx.doi.org/10.7773/cm.v14i2.586
Siqueiros-Beltrones, D.A. 1990. Association structure of benthic diatoms in a hypersaline environment. Ciencias Marinas 16 (1), 101-127. http://dx.doi.org/10.7773/cm.v16i1.678
Siqueiros-Beltrones, D.A. 1990. A view of the indices used to assess species diversity, in benthic diatoms associations. Ciencias Marinas 16 (1), 91-99. http://dx.doi.org/10.7773/cm.v16i1.679
Siqueiros-Beltrones, D.A. 2002. Diatomeas bentónicas de la Península de Baja California, diversidad y potencial ecológico. Centro Interdisciplinario de Ciencias Marinas-Instituto Politécnico Nacional / Universidad Autónoma de Baja California Sur, México.,102 p. ISBN 970-18-7595-8
Siqueiros-Beltrones, D.A. 2005. Una paradoja sobre uniformidad vs. orden y estabilidad en la medida de la diversidad de especies según la teoría de la información. Ludus Vitalis 13 (24), 1-10. ISSN 1113-5165
Siqueiros-Beltrones, D.A, U. Argumedo-Hernández, J. M. Murillo-Jiménez & A.J. Marmolejo-Rodríguez. 2014. Diversidad de diatomeas bentónicas marinas en un ambiente ligeramente enriquecido con elementos potencialmente tóxicos. Revista Mexicana de Biodiversidad 85 (4), 1065-85. Doi: https://doi.org/10.7550/rmb.43748
Siqueiros Beltrones, D. A., U. Argumedo Hernández & O. U. Hernández Almeida. 2017. High species diversity (H´) of benthic diatoms in a coastal lagoon located within a natural protected area. Hidrobiológica, 27(3), 293-300. DOI: https://doi.org/10.24275/uam/izt/dcbs/hidro/2017v27n3/Siqueiros
Wedepohl, H. K. 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta 59 (7), 1217-32. Doi: https://doi.org/10.1016/0016-7037(95)00038-2
Wilson, I.F. & V. S. Rocha. 1955. Geology and mineral deposits of the Boleo copper district, Baja California, Mexico. Geological Survey professional. 273.
Witkowski, A., H. Lange-Bertalot & D. Metzeltin. 2000. Diatom flora of marine coasts. Ruggell: Königstein, Germany: Gantner, Distribributed by Koeltz Scientific Books, 925 p. (Iconographia diatomologica: annotated diatom micrographs).
Downloads
Published
How to Cite
Issue
Section
License
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
De acuerdo con la legislación de derechos de autor, HIDROBIOLÓGICA reconoce y respeta el derecho moral de los autores, así como la titularidad del derecho patrimonial, el cual será cedido a la revista para su difusión en acceso abierto.
Publicar en la revista HIDROBIOLÓGICA tiene un costo de recuperación de $500 pesos mexicanos por página en blanco y negro (aproximadamente 29 dólares americanos) y $1000 pesos por página a color (aproximadamente 58 dólares americanos).
Todos los textos publicados por HIDROBIOLÓGICA sin excepción se distribuyen amparados bajo la licencia Creative Commons 4.0Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en HIDROBIOLÓGICA (por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en HIDROBIOLÓGICA.
Para todo lo anterior, el o los autor(es) deben remitir el formato de Carta-Cesión de la Propiedad de los Derechos de la primera publicación debidamente requisitado y firmado por el autor(es). Este formato se puede enviar por correo electrónico en archivo pdf al correo: enlacerebvistahidrobiológica@gmail.com; rehb@xanum.uam.mx (Carta-Cesión de Propiedad de Derechos de Autor).
Esta obra está bajo una licencia de Creative Commons Reconocimiento-No Comercial 4.0 Internacional.