Characterization of microbial communities associated with cyanoalgal bloom in a dam from León, Gto. México by sequencing of variable regions of the rRNA genes16S and 18S

Authors

  • Laura Valdés-Santiago Instituto Tecnologico Superior de Irapuato

DOI:

https://doi.org/10.24275/uam/izt/dcbs/hidro/2021v31n1/Valdes

Keywords:

16S rRNA, 18S rRNA, Cyanobacterial bloom, microbial diversity, Planktothrix

Abstract

Background: Algal blooms have become more frequent due to human activity, including climate change. Analyzing of microbial diversity during the events provides information of how disturbances are shaping ecosystem. Metagenome-based analysis provides a molecular approach that gives an overview of the dy- namic of the cultivable and uncultivable microbial communities during the bloom. Goals: Our goal was to determine the microbial diversity: the species richness, and their abundance in the dam “El Palote” León, Gto. that presented algal bloom. Methods: Prokaryotic and eukaryotic microbial community composition was analyzed by 16S and 18S rRNA amplification and sequencing. Results: Biodiversity taxonomic analysis was measured by Shannon index showed similar distribution patterns between samples taken at surface and two-meter depth, while Simpson index presented differences. The prokaryotic dominant phyla were cyanobacteria of Planktothrix genera (67%, 0 m and 69%, 2 m), Proteobacteria (13.7 and 13%) and Bacteriodetes (6 and 8.2%). Regarding eukaryotes the dominant groups were Opisthokonta as well as Stramenopila, Alveolata and Rhizaria (SAR). Quantile based analysis showed relative abundance differences Fla- vobacterium spp. Aeromonas spp., Rheinheimera spp., Cetobacterium somerae and Cryptomonas curvata were majority at two meters depth, while Methylocaldum szegediense, Pseudospirillum and Aeromonas sobria presented high abundance at the surface. Conclusions: The re- sults showed an overview of microbial communities asociated with a cianoalgal bloom dominated by Planktothrix agardhii-rubescens.

Downloads

Download data is not yet available.

References

Abed, R.M., A. Al-Thukair & D. de Beer. 2006. Bacterial diversity of a cyanobacterial mat degrading petroleum compounds at elevated salinities and temperatures. FEMS Microbiology Ecology 57(2): 290-301. DOI: 10.1111/j.1574-6941.2006.00113.x
Amin, S. A., Hmelo, L. R., van Tol, H. M., Durham, B. P., Carlson, L. T., Heal, K. R., Morales, C. T., Berthiaume, M. S., Parker, M. S. et al. 2015. Interaction and signaling between a cosmopolitan phytoplankton and associated bacteria. Nature 522: 98–101. DOI: 10.1038/nature14488
Arzate-Cárdenas, M. A., R. Olvera-Ramírez & F. Martínez-Jerónimo. 2010. Microcystis toxigenic strains in urban lakes: A case of study in Mexico City. Ecotoxicology 19: 1157-1165. DOI: 10.1007/s10646-010-0499-7
Beaz-Hidalgo, R., Latif-Eugenín, F., Hossain, M.J., Berg, K., Niemi, R.M., Rapala, J., Lyra, C., M.R. Liles & M.J. Figueras. 2015. Aeromonas aquatica sp. nov., Aeromonas finlandiensis sp. nov. and Aeromonas lacus sp. nov. isolated from Finnish waters associated with cyanobacterial blooms. Systematic and Applied Microbiology 38(3): 161-8. DOI: 10.1016/j.syapm.2015.02.005
Brambilla, E., Hippe, H., Hagelstein, A., B. J. Tindall & E. Stacebrandt. 2001. 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremophiles 5: 23–33. DOI: 10.1007/s007920000169
Callahan B. J., McMurdie P. J., Rosen M. J., Han A. W., A. J. Johnson & S. P. Holmes. 2016. DADA2: High resolution sample inference from Illumina amplicon data. Nature Methods 13(7): 581-583. DOI: 10.1038/nmeth.3869
Cantoral Uriza, E. A., Asencio Martínez, A. D. & M. Aboal Sanjurjo. 2017.Cyanotoxins: environmental and health effects. Prevention measures. Hidrobiológica 27 (2): 241-251. DOI: 10.24275/uam/izt/dcbi/hidro/2017v27n2/Cantoral
Carporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A. et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods. 7 (5): 335-336. DOI: 10.1038/nmeth.f.303
Catherine, A., Quiblier C., Yéprémian C., Patrice G., Groleau A., Vincon-Leite, B., Bernad, C. & Troyssellier M. (2008). Collapse of a Planktothrix agardhii perennial bloom and mycrocystin dynamics in response to reduced phosphate concentrations in a temperate lake. FEMS Microbiology Ecology 65: 61-73 DOI:10.1111/j.1574-6941.2008.00494.x
Davis, P.A., Dent, M., Parker, J., Reynolds, C.S., & A.E. Walsby. 2003. The annual cycle of growth rate and biomass change in Planktothrix spp. In Blelham Tarn, English Lake District. Freshwater Biology 48: 852–867. DOI: 10.1046/j.1365-2427.2003.01055.x
Del Campo, J., Mallo, D., Massana, R., De Vargas, C., Richards, T. A. & I. Ruiz-Trillo. 2015. Diversity and distribution of unicellular opisthokonts along the European coast analyzed using high-throughput sequencing. Environmental Microbiology 17(9): 3195–3207. DOI:10.1111/1462-2920.12759
Fernández-Bravo, A & M.J. Figueras. 2020. An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity. Microorganisms 8(1):129. DOI:10.3390/microorganisms8010129
Figueras, M.J., Alperi, A. Beaz-Hidalgo, R., Stackebrandt, E., Brambilla, E., A.Monera & A. J. Martínez-Murcia. 2011. Aeromonas rivuli sp. nov., isolated from the upstream region of a karst water rivulet. Int J Syst Evol Microbiol 61(2): 242-248. DOI: 10.1099/ijs.0.016139-0
Gobler, C. J. 2020. Climate change and Harmful Algal Blooms: Insights and perspective. Harmful Algae 91 (101731) 1-4. DOI: 10.1016/j.hal.2019.101731
Gotelli, N.J. & R. K. Colwell. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4: 379-391. DOI:10.1046/j.1461-0248.2001.00230.x
Grattepanche, J-D., Walker, L.M., Ott, B. M., Paim Pinto, D. L. Delwiche, C. F., Lane, C. E. & L. A. Katz. 2018. Microbial Diversity in the Eukaryotic SAR Clade: Illuminating the Darkness Between Morphology and Molecular Data. BioEssays 40: 1700198. DOI: 10.1002/bies.201700198
Ismail, A.H. & A. A. M. Adnan. 2016. Zooplankton composition and abundance as indicators of eutrophication in two small man-made lakes. Tropical Life Sciences Research 27 (Supp. 1): 31–38. DOI: 10.21315/ tlsr2016.27.3.5
Jakhar, P. 2013. Role of Phytoplankton and Zooplankton as Health Indicators of Aquatic Ecosystem: A Review. International Journal of Innovation Research Study 2(12):490-500.
Kumari, S., Gayathri, S., & R. Mohan. 2018. Phytoplankton Diversity in Bangalore Lakes, Importance of Climate Change and Nature´s Benefits to People. Journal of Ecology & Natural Resources 2(1): 118. DOI: 10.23880/jenr-16000118
Kurmayer, R., Christiansen, G., J. Fastner & T. Börner. 2004. Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp. Environmental Microbiology 6(8): 831–841. DOI: 10.1111/j.1462-2920.2004.00626.x
Kruk, C., Martínez, A., Martínez de la escalera, G., Trinchin, R., Manta, G., Segura, M. A., Poccini, C. et al., (2019) Floración excepcional de cianobacterias tóxicas en la costa de Uruguay, verano 2019. INNOTEC 18: 36-68. DOI:10.26461/18.06
Krupa, E., Romanova, S., Berkinbaev, G., Yakovleva, N. & E. Sadvakasov. 2020. Zooplankton as Indicator of the Ecological State of Protected Aquatic Ecosystems (Lake Borovoe, Burabay National Nature Park, Northern Kazakhstan). Water. 12(9):2580 DOI: https://doi.org/10.3390/w12092580
Li, Q., Lin, F., Yang C., Wang, J., Lin, Y., Shen, M., Park, M.S., T. Li & J. Zhao. 2018. A Large-Scale Comparative Metagenomic Study Reveals the Functional Interactions in Six Bloom-Forming Microcystis-Epibiont Communities. Frontiers in Microbiology 9 (746): 1-16 DOI:10.3389/fmicb.2018.00746
Mallia, V., Ivanova, L., Eriksen, G. S., Harper, E., Connolly, L. & S. Uhlig. 2020. Investigation of In Vitro Endocrine Activities of Mycrocystis and Planktothrix Cyanobacterial Strains. Toxins 12:228; DOI:10.3390/toxins12040228
Moreira, G. A. L., Hinegk, L., Salvadore, A., Zolezzi, G., Hölker, F., Domecq, R. A. M., Bocci, M., Carrer, S., Nat, L. D., Escribá, J., et al. 2018. Eutrophication, research and management history of the sallow Ypacaraí Lake (Paraguay). Sustainability 10: 2426. DOI: 10.3390/su10072426
Needham, D. M. & J. A. Fuhrman. 2016. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nature Microbiology 1: 1–7. DOI: 10.1038/nmicrobiol.2016.5
Niswati, A., Murase, J., S. Asakawa & M. Kimura. 2004. Analysis of communities of ammonia oxidizers, methanotrophs, and methanogens associated with microcrustaceans in the floodwater of a rice field microcosm. Soil Science and Plant Nutrition 50 (3): 447-455. DOI: 10.1080/00380768.2004.10408499
Oliva-Martínez, M. G., A., Rodríguez-Rocha, A., Lugo-Vázquez & M. R. Sánchez-Rodríguez. 2008. Composición y dinámica del fitoplancton en un lago urbano hipertrófico. Hidrobiológica 18 (1): 752-761.
Oliver, R.L. & G. G. Ganf, G.G. 2000. Freshwater blooms. In: Whitton, B.A., & M. Potts (eds). The Ecology of Cyanobacteria. Their Diversity in Time and Space. Dordrecht: Kluwer Academic Publishers, pp. 149–194.
Park, S., Park, J.M., Won S.M., Y. T. Jung & J. H. Yoon. 2014. Rheinheimera arenilitoris sp. nov., isolated from seashore sand. International Journal of Systematic and Evolutionary Microbiology 64: 3749-3754 DOI: 10.1099/ijs.0.067504-0
Richards, D. 2019. Spatial and Temporal Variability in Zooplankton Assemblages in Utah. Progress Report To: Wasatch Front Water Quality Council. DOI: 10.13140/RG.2.2.30241.15208
Sivonen, K. & G. Jones. 1999. Cyanobacterial toxins. In: Chorus, I. & J. Bartram. (eds). Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management. London, UK: WHO, E & FN Spon, pp. 41–112.
Teeling, H., Fuchs, B. M., Becher, D., Klockow, C., Gardebrecht, A., Bennke, C. M., et al. (2012). Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336 (6081): 608–611. DOI: 10.1126/science.1218344
Thukral, A.K., Bhardwaj, R., Kumar, V. & A. Sharma. 2019. Corrigendum to "New indices regarding the dominance and diversity of communities, derived from sample variance and standard deviation” Heliyon 5(12): e03017. DOI: 10.1016/j.heliyon.2019.e03017
Tomasini-Ortiz, A. C., G. Moeller-Chávez, J. J. Sánchez & L. A. Bravo. 2012. Cianobacterias y cianotoxinas en el lago de Pátzcuaro, Michoacán, México. REVISTA AIDIS de Ingeniería y Ciencias Ambientales: Investigación, desarrollo y práctica 5 (2): 93-101. DOI:10.22201/iingen.0718378xe.2012.5.2.32650
Tsuchiya, C., T. Sakata & H. Sugita. 2008. Novel ecological niche of Cetobacterium somerae, an anaerobic bacterium in the intestinal tracts of freshwater fish. Letters in Applied Microbiology 46(1): 43-8. DOI: 10.1111/j.1472-765X.2007.02258.x.
Tuomainen, J.M., Hietanen, S., Kuparinen, J., P. J. Martikainen & K. Servomaa. 2003. Bactic Sea cyanobacterial bloom contains denitrification and nitrification genes, but has neglilible denitrification activity. FEMS Mycrobiology Ecology 45(2): 83-96. DOI: 10.1016/S0168-6496(03)00131-4
Vasas, G., Farkas, O., Borics, G., Felföldi, T., Sramkó, G., Batra, G., Bácsi, I. & S. Gonda. 2013. Appearance of Planktothrix rubescens Bloom with [D-Asp3, Mdha7] MC-RR in Gravel Pit Pondo f a Shallow Lake-Dominated Area. Toxins 5: 2434-2455 DOI:10.3390/toxins5122434
Vasconcelos, V. M. 1999. Cyanobacterial toxins in Portugal: Effects on aquatic animals and risk for human health. Brazilian Journal of Medical and Biological Research 32 (3): 249-254. DOI: 10.1590/s0100-879x1999000300001
Wirth, C., R. Limberger & T. Weisse. 2019. Temperature x Light interaction and tolerance of high water temperatura in the planktonic freshwater flagellates Cryptomonas (Cryptophyceae) and Dinobryon (Chrysophyceae). Journal of Phycol 55: 404-414 DOI:10.1111/jpy.12826
Xu, Z., Te, S. H., Xu, C., H. Yiliang & K. Y.H. Gin. 2018. Variations of Bacterial Community Composition and Functions in an Estuary Reservoir during Spring and Summer Alternation. Toxins 10 (315): 45-66. DOI:10.3390/toxins10080315
Zheng, T. L., Li, W. & Y. Li. 2011. Advance in study on microbial control of harmful algae blooms-explotation and research on marine algicidal bacteria. Xiamen: Xiamen University. 10: 1658-1668.
Zhou, J., Richlen, M.L., Sehein, T.R., Kulis, D.M., D. M. Anderson & Z. Cai. 2018. Microbial Community Structure and Associations During a Marine Dinoflagellate Bloom. Frontiers in Microbiology 9:1201. DOI: 10.3389/fmicb.2018.01201

Published

2021-05-14

How to Cite

Valdés-Santiago, L. (2021). Characterization of microbial communities associated with cyanoalgal bloom in a dam from León, Gto. México by sequencing of variable regions of the rRNA genes16S and 18S. HIDROBIOLÓGICA, 31(1). https://doi.org/10.24275/uam/izt/dcbs/hidro/2021v31n1/Valdes

Issue

Section

Artículos