Ionic variability in the hydrographic network of Oaxaca, Mexico: multivariate graphic and statistical alternative

Authors

  • Alejandra Gabriela Vargas Orozco Colegio de Postgraduados, campus Montecillo.
  • Carlos Ramírez Ayala Colegio de Postgraduados, campus Montecillo.
  • Héctor Manuel Ortega Escobar Colegio de Postgraduados, campus Montecillo.
  • Edgar Iván Sánchez Bernal Instituto de Ecología, Universidad del Mar.
  • Elí Ramírez Vázquez Colegio de Postgraduados, Campus Montecillo

Keywords:

chemical composition, graphical methods, soluble salts, surface currents, statistic analysis

Abstract

Background. Factors such as lithology, geomorphology, climate and anthropogenic activities, cause ionic variability of surface, subsurface and underground water. The study of this variability allows to know its hydrochemical characteristics for its subsequent use. The interpretation of the ionic variability is carried out by mean of graphic methods, and multivariate statistics have been integrated into these analyses during the last few years. Objective. To perform a chemical analysis, to identify the factors affecting the water, and to prove that complementing the Piper diagram with a multivariate analysis helps to obtain a better interpretation of results. Methods. This work was carried out in the Oaxaca-Puebla hydrographic network, considering the complex relief and the heterogeneous lithological and climate conditions, especially in Oaxaca. A total of 90 samples were collected, three of which were taken in salt flats in Zapotitlán, Puebla and the rest of them in the state of Oaxaca. A Piper diagram was used for water classification, as well as the principal component analysis (PCA) to improve the interpretation of data. Results. The triangular diagram allowed to classify the waters of the hydrographic network into two large groups, calcium-magnesium bicarbonate, and calcium-magnesium sulfate, in addition to the separation of saline waters. The PCA, in addition to showing the same groups of waters, allowed to prove a higher concentration of sodium chloride at the highest point of the salt flat, as compared to the other two that were taken at this site. With the PCA, the water of the Copalita river basin could be classified as calcium-magnesium bicarbonate, coinciding with previous studies. Conclusions. By complementing a Piper diagram with a PCA, the interpretation of the ionic variability of the Oaxaca-Puebla hydrographic network improved.

Downloads

Download data is not yet available.

Author Biographies

Alejandra Gabriela Vargas Orozco, Colegio de Postgraduados, campus Montecillo.

Ingeniero Ambiental, realizando Maestría en Ciencias en el área de Hidrociencias del Colegio de Postgraduados.

Carlos Ramírez Ayala, Colegio de Postgraduados, campus Montecillo.

Profesor investigador en el área de Hidrociencias del Colegio de Postgraduados, campus Montecillo.

Héctor Manuel Ortega Escobar, Colegio de Postgraduados, campus Montecillo.

Profesor investigador en el área de Hidrociencias del Colegio de Postgraduados, campus Montecillo.

Edgar Iván Sánchez Bernal, Instituto de Ecología, Universidad del Mar.

Profesor investigador en el Instituto de Ecología, Universidad del Mar.

Elí Ramírez Vázquez, Colegio de Postgraduados, Campus Montecillo

Estudiante de doctorado en el programa de Ciencias Forestales del Colegio de Postgraduados, campus Montecillo

References

Ahamed, A.J., K. Loganathan, S. Ananthakrishnan, J.K.C. Ahmed, M.A. Asharf. 2016. Evaluation of graphical and multivariate statistical methods for classification and evaluation of groundwater in Alathur Block, Perambalur District, India. Applied Ecology and Environmental Research 15(3):105-116. DOI:10.15666/aeer/1503_105116

ASTM (American Society for Testing and Materials). 2002. Standard Test Method for Alkalinity in Brackish Water, Seawater, and Brines/ Designation: D3875–03. ASTM International, West Conshohocken, PA: United States. 4 p.

ASTM (American Society for Testing and Materials). 2003. Standard Test Methods for Calcium and Magnesium In Water/ Designation: D511–03. ASTM International, West Conshohocken, PA: United States. 9 p.

Anderson, N.J., R. Harriman, D.B. Ryves & S.T. Patrick. 2001. Dominant factors controlling variability in the ionic composition of West Greenland lakes. Arctic, Antarctic, and Alpine Research 33(4):418-425. DOI:10.1080/15230430.2001.12003450

Avilés, A., M. Novič, V. Clavero & F.X. Niell. 2003. Variabilidad iónica en el complejo fluvial formado por los ríos Pivka, Unica y Ljubljanica (Eslovenia). Limnetica 22(1-2):155-164. DOI:10.23818/limn.22.10

Baird, R.B., A.D. Eaton & E.W. Rice. 2017. Standard methods for examination of water and wastewater. 23rd ed. American Public Health Association/American Water Works Association/Water Environment Federation. Washington, D.C. USA. 1545 p.

Belkhiri, L., A. Boudoukha & L. Mouni. 2011. A multivariate statistical analysis of groundwater chemistry data. International Journal of Environmental Research 5(2):537-544.

Betancourt, C., R. Suárez, R.E. Concepción & H. Herrera. 2012. Tendencia de los componentes mayoritarios del agua de cuatro embalses en el Centro-Sur Cubano, durante un período de veinte años. Gestión Ambiental 23:51-65.

Biglari, H., A. Chavoshani, N. Javan, A. M. Hossein. 2015. Geochemical study of groundwater conditions with special emphasis on fluoride concentration, Iran. Desalination and Water Treatment 57(47):22392- 22399. DOI:10.1080/19443994.2015.1133324

Camacho, B.A., H.M.E. Ortega, E.I.B. Sánchez & Á.C. Can. 2020. Indicadores de calidad físico química de las aguas residuales del estado de Oaxaca, México. Terra Latinoamericana 38(2):361-375. DOI:10.28940/terra.v38i2.610

Chadha, D.K. 1999. A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeology Journal 7(5):431-439. DOI:10.1007/s100400050216

Clesceri, L.S., A.E. Greenberg & A.D. Eaton (eds.). 1998. Standard Methods for the Examination of Water and Wastewater. 20th ed. American Health Association (APHA). Washington, D. C. Folio variado

CNA (Comisión Nacional del Agua). 2012. Programa Hídrico Regional Visión 2030. Región Hidrológico-Administrativa V Pacífico Sur. Secretaría de Medio Ambiente y Recursos Naturales. México, D.F. 155 p.

Dong, J.D., Y.Y. Zhang, Y.S. Wang, M.L. Wu, S. Zhang & C.H. Cai. 2010. Chemometry use in the evaluation of the Sanya Bay water quality. Brazilian Journal of Oceanography 58(4):339-352. DOI:10.1590/ S1679-87592010000400008

Faitouri, M.A., F. Salloum & M.A. Muftah. 2018. Determination of water type in Benghazi Plain aquifers by chemical and statistical methods. Available online at: https://www. researchgate.net/publication/333321627_Determination_of_water_type_in_Benghazi_Plain_aquifers_by_chemical_and_ statistical_methods (downloaded December 15, 2020)

Gajbhiye, S., S.K. Sharma & M.K. Awasthi. 2015. Application of principal components analysis for interpretation and grouping of water quality parameters. International Journal of Hybrid Information Technology 8(4):89-96. DOI:10.14257/ijhit.2015.8.4.11

Güler, C., G.D. Thyne, E.J. McCray & A.K. Turner. 2002. Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology Journal 10(4):455-474. DOI:10.1007/s10040-002-0196-6

Hernández, S.J.R., M.A.P. Ortiz & M.M.E. Figueroa. 2008. Análisis morfoestructural del estado de Oaxaca, México: un enfoque de clasificación tipológica del relieve. Investigaciones Geográficas 68:7-24.

Mancilla, O.R.V., A.L.O. Bautista, H.M.E. Ortega, E.I.B. Sánchez, A.C. Can, R.D.G. Guevara & Y.M.M. Ortega. 2014. Hidrogeoquímica de salinas Zapotitlán y los lagos-cráter Alchichica y Atexcac, Puebla. IDESIA 32(1):55-69. DOI:10.4067/S0718-34292014000100007

Peña, D. 2002. Análisis de datos multivariantes. McGraw-Hill Interamericana de España, Madrid. 539 p.

Pérez, D.J.P., H.M.E. Ortega, C.A. Ramírez, H.F. Magdaleno, E.I.B. Sánchez, A.C. Can & O.R.V. Mancilla. 2019. Concentración de nitrato, fosfato, boro y cloruro en el agua del río Lerma. Ecosistemas y Recursos Agropecuarios 6(16):175-182. DOI:10.19136/era.a6n16.1829

Sánchez, B.E.I., O.G. Sandoval, M.A.E. Camacho, F.M. Valdez & A.L. Rodríguez. 2014. Calidad hidrogeoquímica de las aguas del río Copalita, Oaxaca, México. Revista Internacional de Ciencia y Sociedad 1(2): 27-41.

SEMAEDESO (Secretaría del Medio Ambiente, Energías y Desarrollo Sustentable). 2018. Programa Estatal de Cambio Climático de Oaxaca 2016- 2022. Gobierno Constitucional del Estado de Oaxaca. 370 p.

Shelton, J.L., A.M. Engle, A. Buccianti & M.S. Blondes. 2018. The isometric log-ratio (irl)-ion plot: A proposed alternative to the Piper diagram. Journal of Geochemical Exploration 190:130-141. DOI:10.1016/j. gexplo.2018.03.003

Subba, R.N., B. Sunitha, N. Adimalla & M. Chaudhary. 2020. Quality criteria for groundwater use from a rural part of Wanaparthy District, Telangana State, India, through ionic spatial distribution (ISD), entropy water quality index (EWQI) and principal component analysis (PCA). Environmental Geochemistry and Health 40:1405-1435. DOI:10.1007/s10653-019-00393-5

Tahvanainen, T., T. Sallantaus, R. Heikkilä & T. Tolonen. 2002. Spatial variation of mire surface water chemistry and vegetation in Northeastern Finland. Annales Botanici Fennici 39:235-251.

Vásquez, M., G. Ramírez & T. García. 2016. Un índice de capacidad multivariante basado en la probabilidad de no conformidad, una aplicación al monitoreo de calidad de un ciclo de agua clarificada. Revista Ingeniería UC 23(3):319-326.

Velázquez, A.L. & A.A. Ordaz. 1992. Provincias hidrogeológicas de México. Tecnología y Ciencias del agua. Disponible en línea en: http:// revistatyca.org.mx/ojs/index.php/tyca/article/view/691 (consultado el 26 enero 2021).

Wu, Z.Z., Z.W. Che, Y.S. Wang, J.D. Dong & M.L. Wu. 2015. Identification of Surface water quality along the coast of Sanya, South China sea. PLos ONE 10(4):e0123515. DOI:10.1371.journal.pone.0123515

Published

2022-02-04

How to Cite

Vargas Orozco, A. G., Ramírez Ayala, C., Ortega Escobar, H. M., Sánchez Bernal, E. I., & Ramírez Vázquez, E. (2022). Ionic variability in the hydrographic network of Oaxaca, Mexico: multivariate graphic and statistical alternative. HIDROBIOLÓGICA, 31(3). Retrieved from https://hidrobiologica.izt.uam.mx/hidrobiologica/index.php/revHidro/article/view/1363

Issue

Section

Artículos