Efectos diferenciales en la toxicidad y bioconcentración de Cromo hexavalente y trivalente en el rotífero Lecane papuana (Murray, 1913) (Monogononta: Lecanidae)

Efectos diferenciales del cromo en el rotífero Lecane papuana

Autores/as

  • Carlos Vicente Garza-León Centro de Investigaciones en Óptica
  • Cecilia Alejandra Fernández-Flores Benemérita Universidad Autónoma de Aguascalientes
  • Mario Alberto Arzate-Cárdenas Benemérita Universidad Autónoma de Aguascalientes
  • Isidoro Rubio-Franchini Instituto de Salud del Estado de Aguascalientes
  • Roberto Rico Martínez Benemérita Universidad Autónoma de Aguascalientes

Palabras clave:

concentración letal media (CL50), factor de bioconcentración (BCF), metales, organismos de prueba alternativos, tasa intrínseca de crecimiento

Resumen

Antecedentes: Si bien, los metales pesados como el cromo, el plomo y el mercurio se encuentran de forma natural, también llegan a los ambientes acuáticos a través de actividades antropogénicas, a veces en concentraciones alarmantes, alterando así la dinámica de las comunidades. El cromo, que está presente en los vertidos de las industrias automotrices y curtiduría, se presenta en dos formas estables: trivalente (Cr III) y hexavalente (Cr VI). Debido a que éstas formas difieren en sus propiedades químicas, su biodisponibilidad es distinta, y como resultado, también los efectos sobre los organismos. Objetivos: El objetivo de nuestro estudio fue evaluar los efectos de Cr III y Cr VI en el rotífero Lecane papuana (Murray, 1913) determinando cómo estas formas afectan los parámetros demográficos de supervivencia (l x ) y fecundidad (mx ). Métodos: Realizamos pruebas de toxicidad aguda de 48-h y crónicas de 5-d en ambas formas de cromo. Además, se obtuvo el factor de bioconcentración y la carga corporal de metal después de 24 h de exposición a Cr III y Cr VI. Resultados: Respecto a los valores de CL50, nuestros resultados indican que Cr III fue menos tóxico que Cr VI (Cr III = 2.613 mg/L; Cr VI = 0.177 mg/L). La tasa intrínseca de crecimiento se vio significativamente afectada por Cr III, mientras que Cr VI no mostró cambios significativos, solo a 0.0885 mg/L cuya concentración representa 0.5X de su CL50. Aunque Cr III no fue tan tóxico como Cr VI, nuestros experimentos de bioconcentración demostraron que L. papuana acumuló más Cr III que Cr VI, y lo hizo en concentraciones ambientales relevantes.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Roberto Rico Martínez, Benemérita Universidad Autónoma de Aguascalientes

Profesor-Investigador Titular "C".

Citas

Aharchaou, I., M. Rosabal., F. Liu., E. Battaglia., D. A. L. Vignati & C. Fortin. 2017. Bioaccumulation and subcellular partitioning of Cr(III) and Cr(- VI) in the freshwater green alga Chlamydomonas reinhardtii. Aquatic Toxicology 182: 49-57. DOI: 10.1016/j.aquatox.2016.11.004

Albert, L.A. 1997. Cromo. Introducción a la toxicología ambiental, 46- 227.

Arnot, J. A. & F.A. Gobas. 2011. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environmental Reviews 14 (4): 257-297. DOI: 10.1139/a06-005

Arzate-Cárdenas, M. A. & F. Martínez-Jerónimo. 2011. Age-altered susceptibility in hexavalent chromium-exposed Daphnia schodleri (Anomopoda: Daphniidae): Integrated Biomarker Response implementation. Aquatic Toxicology 105 (3): 528-534. DOI: 10.1016/j. aquatox.2011.08.006

ATSDR (Agency for Toxic Substances and Disease Registry). 2012. Toxicological Profile for Chromium. Public Health Service, US Department of Health and Human Services. Available online at: https://www.atsdr. cdc.gov/toxprofiles/tp7.pdf (downloaded: May 09, 2022)

Australian Government. 2011. National Water Quality Management Strategy. Australian Drinking Water Guidelines 6. Available online at: https://www.nhmrc.gov.au/sites/default/files/documents/reports/ aust-drinking-water-guidelines.pdf (Downloaded May 09, 2022)

Bielicka, A., I. A. Bojanowska & A. Wiśniewski. 2005. Two faces of chromiumpollutant and bioelement. Polish Journal of Environmental Studies 14 (1): 5-10.

CCME (Canadian Council of Ministers of the Environment). 1999. Canadian water quality guidelines for the protection of aquatic life: chromium - Hexavalent chromium and trivalent chromium. In: Canadian environmental Quality Guidelines, 1999. Canadian Council of Ministers of the Environment, Winnipeg. ISBN 1-896997-34-1. Available online at: http://ceqg-rcqe.ccme.ca/download/en/165 (Downloaded May 09, 2022)

Chatterjee, N. & Z. Luo. 2010. Cr-(III)-organic compounds treatment causes genotoxicity and changes in DNA and protein level in Saccharomyces cerevisiae. Ecotoxicology, 19(4): 593-603. DOI: 10.1007/ s10646-009-0420-4

Dayan, A. D. & A. J. Paine. 2001. Mechanisms of chromium toxicity, carcinogenicity and allergenicity: Review of the literature from 1985 to 2000. Human & Experimental Toxicology 20 (9): 439-451. DOI: 10.1191/096032701682693062

De Manuel, J. 1994. Taxonomic and zoogeographic considerations on Lecanidae (Rotifera: Monogononta) of the Balearic archipelago, with description of a new species, Lecane margalefi n.sp. Hydrobiologia 288 (2): 97-105. DOI: 10.1007/BF00007129

Di Bona, K. R., S. Love., N. R. Rhodes., D. McAdory., S.H. Sinha., N. Kern., J. Kent., J. Strickland., A. Wilson., J. Beaird., J. Ramage., J. Rasco & J. B. Vincent. 2011. Chromium is not an essential trace element for mammals: Effects of a “low-chromium” diet. Journal of Biological Inorganic Chemistry 16 (3): 381-390. DOI: 10.1007/s00775-010- 0734-y

DOF (Diario Oficial de la Federación). 1995. Norma Oficial Mexicana NOM-117-SSA1-1994. Bienes y servicios. Método de prueba para la determinación de cadmio, arsénico, plomo, estaño, cobre, fierro, zinc y mercurio en alimentos, agua potable y agua purificada por espectrometría de absorción atómica. Available online at: https://www.dof.gob.mx/nota_detalle.php?codigo=4879610&fecha=16/08/1995#gsc.tab=0. (Downloaded October 4, 2023)

DOF (Diario Oficial de la Federación). 2022. Norma Oficial Mexicana NOM-001-SEMARNAT-2021. Que establece los límites permisibles de contaminantes en las descargas de aguas residuales en cuerpos receptores propiedad de la nación. Available online at:

Ercal, N., H. Gurer-Orhan & N. Aykin-Burns. 2001. Toxic Metals and Oxidative Stress Part I: Mechanisms Involved in Metal-induced Oxidative Damage. Current Topics in Medicinal Chemistry, 1(6): 529-539. DOI: 10.2174/1568026013394831

Fendorf, S. E. 1995. Surface reactions of chromium in soils and waters. Geoderma 67 (1): 55-71. DOI: 10.1016/0016-7061(94)00062-F

Feng, M., H. Yin., H. Peng., G. Lu., Z. Liu & Z. Dang. 2018. ITRAQ-based proteomic profiling of Pycnoporus sanguineus in response to co-existed tetrabromobisphenol A (TBBPA) and hexavalent chromium. Environmental Pollution, 242: 1758-1767. DOI: 10.1016/j. envpol.2018.07.093

Fiałkowska, E. & A. Pajdak-Stós, A. 2008. The role of Lecane rotifers in activated sludge bulking control. Water Research 42 (10): 2483-2490. DOI: 10.1016/j.watres.2008.02.001

Gagneten, A. M. & A. Imhof. 2009. Chromium (Cr) accumulation in the freshwater crab, Zilchiopsis collastinensis. Journal of Environmental Biology 30 (3): 345-348.

Gagneten, A. M., R. R. Plá., L. Regaldo & J. C. Paggi. 2009. Assessment of Bioconcentration Factor of Chromium by Instrumental Neutron Activation Analysis in Argyrodiaptomus falcifer Daday, a Subtropical Freshwater Copepod. Water, Air, and Soil Pollution 204 (1): 133-138. DOI: 10.1007/s11270-009-0032-x

Garza-León, C. V., M. A. Arzate-Cárdenas & R. Rico-Martínez. 2017. Toxicity evaluation of cypermethrin, glyphosate, and malathion, on two indigenous zooplanktonic species. Environmental Science and Pollution Research 24 (22): 18123-18134. DOI: 10.1007/s11356- 017-9454-y

Government of Canada, Health Canada. 2018. Guidelines for Canadian Drinking Water Quality: Guideline Technical Document – Chromium. Available online at: https://www.canada.ca/en/health-canada/services/publications/healthy-living/guidelines-canadian-drinking-water-quality-guideline-technical-document-chromium-profile.html (Downloaded May 09, 2022)

Gutierrez, M. F., A. M. Gagneten & J. C. Paggi. 2010. Copper and Chromium Alter Life Cycle Variables and the Equiproportional Development of the Freshwater Copepod Notodiaptomus conifer (SARS). Water, Air, & Soil Pollution 213 (1): 275-286. DOI: 10.1007/s11270-010- 0383-3

HBM4EU (European Environment Agency and European Commission). 2020. Science and policy for healthy future. Chromium VI. Legislative status in the European Union. Available online at: https://www. hbm4eu.eu/the-substances/chromium-vi/#:~:text=A%20maximum%20value%20of%2050,specifically%20for%20Cr(VI). (Downloaded May 09, 2022)

He, Z., J. Shentu., X. Yang., V. C. Baligar., T. Zhang & P. J. Stoffella. 2015. Heavy Metal Contamination of Soils: Sources, Indicators and Assessment. Journal of Environmental Indicators, 9:17-18.

Hermens, J., H. Canton., N. Steyger & R. Wegman. 1984. Joint effects of a mixture of 14 chemicals on mortality and inhibition of reproduction of Daphnia magna. Aquatic Toxicology 5 (4): 315-322. DOI: 10.1016/0166-445X(84)90012-2

Hernández-Flores, S., G. E. Santos-Medrano., I. Rubio-Franchini., & R. Rico-Martínez. 2020. Evaluation of bioconcentration and toxicity of five metals in the freshwater rotifer Euchlanis dilatata Ehrenberg, 1832. Environmental Science and Pollution Research 27 (12): 14058-14069. DOI: 10.1007/s11356-020-07958-3

Hernández-Ruiz, E., J. Alvarado-Flores., I. Rubio-Franchini., J. Ventura-Juárez & R. Rico-Martínez. 2016. Adverse effects and bioconcentration of chromium in two freshwater rotifer species. Chemosphere 158: 107-115. DOI: 10.1016/j.chemosphere.2016.05.067

Jacobs, J. A. & S. M. Testa. 2004. Overview of Chromium(VI) in the Environment: Background and History. In: Guertin J., J. A. Jacobs & C. P. Avakian (Eds.). Chromium(VI) Handbook. 1st ed. CRC Press. Boca Raton, Florida, pp. 1-22.

Joadder, M. A. R. 2014. Seasonal Occurence of Food and Feeding Habit of Labeo bata (Hamilton) (Cypriniformes: Cyprinidae). Journal of Science Foundation 12 (1): 7-15. DOI: 10.3329/jsf.v12i1.23458

Keppeler, E. C., S. L. S. de Souza., E. S. da Silva., R. O. P. Serrano., R. O. P., R. M. de Souza., I. Í. da Silva Dantas., J. F. Silvério & F. P. Madeira. 2010. Rotifera, Eurotatoria, Lecanidae, Lecane monostyla (Daday, 1897): new occurrence for state of Acre. Ensaios e Ciência: Ciências Biológicas, Agrárias e da Saúde 14(1), 9-14.

Klimek, B., E. Fiałkowska., W. Kocerba-Soroka., J. Fyda., M. Sobczyk & A. Pajdak-Stós. 2013. The Toxicity of Selected Trace Metals to Lecane inermis Rotifers Isolated from Activated Sludge. Bulletin of Environmental Contamination and Toxicology 91 (3): 330-333. DOI: 10.1007/s00128-013-1062-z

Martínez-Jerónimo, F., L. Martínez-Jerónimo & F. Espinosa-Chávez. 2006. Effect of culture conditions and mother’s age on the sensitivity of Daphnia magna Straus 1820 (Cladocera) neonates to hexavalent chromium. Ecotoxicology 15 (3): 259-266. DOI: 10.1007/s10646- 006-0057-5

Martínez-Jerónimo, F., J. Rodríguez-Estrada & L. Martínez-Jerónimo. 2008. Daphnia exilis Herrick, 1895 (Crustacea: Cladocera): A zooplankter potentially usable as test organism for acute toxicity tests in tropical and subtropical environments. Revista Internacional de Contaminación Ambiental 24 (4): 153-159. DOI: S0188-49992008000400001

Muggelberg, L. L., K. E. Huff Hartz., S. A. Nutile., A. D. Harwood., J. R. Heim., A. P. Derby., D. P. Weston & M. J. Lydy. 2017. Do pyrethroid-resistant Hyalella azteca have greater bioaccumulation potential compared to non-resistant populations? Implications for bioaccumulation in fish. Environmental Pollution 220: 375-382. DOI: 10.1016/j.envpol.2016.09.073

Norseth, T. 1986. The carcinogenicity of chromium and its salts. British Journal of Industrial Medicine, 43(10): 649-651. DOI: 10.1136/ oem.43.10.649

Norwood, W. P., U. Borgmann & D. G. Dixon. 2006. Saturation models of arsenic, cobalt, chromium and manganese bioaccumulation by Hyalella azteca. Environmental Pollution 143 (3): 519-528. DOI: 10.1016/j.envpol.2005.11.041

Pereira, Y., G. Lagniel., E. Godat., P. Baudouin-Cornu., C. Junot & J. Labarre. 2008. Chromate Causes Sulfur Starvation in Yeast. Toxicological Sciences, 106(2): 400-412. DOI: 10.1093/toxsci/kfn193

Pérez-Legaspi, I. A. & R. Rico-Martínez. 2001. Acute toxicity tests on three species of the genus Lecane (Rotifera: Monogononta). Hydrobiologia, 446 (1): 375-381. DOI: 10.1023/A:1017531712808

Rainbow, P. S. 2007. Trace metal bioaccumulation: Models, metabolic availability and toxicity. Environment International 33 (4): 576-582. DOI: 10.1016/j.envint.2006.05.007

Rajkumar, J. S. I. & S. Tennyson. 2013. Acute effects of chromium on bioaccumulation and biochemical profile of Mugil cephalus (Linnaeus, 1758). International Journal of Advanced Life Sciences (IJALS) 6 (2), 107-115. Available online at: https://www.researchgate.net/ profile/Samuel-Tennyson/publication/341978211_Acute_effects_ of_chromium_on_bioaccumulation_and_biochemical/links/5edbc65e299bf1c67d4ab9e3/Acute-effects-of-chromium-on-bioaccumulation-and-biochemical.pdf. (Downloaded May, 2022)

Rivera-Dávila, O. L., G. Sánchez-Martínez & R. Rico-Martínez. 2021. Ecotoxicity of pesticides and semiochemicals used for control and prevention of conifer bark beetle (Dendroctonus spp.) outbreaks. Chemosphere 263: 128375. DOI: 10.1016/j.chemosphere.2020.128375

Rudolf, E. & M. Červinka. 2006. The role of intracellular zinc in chromium (VI)-induced oxidative stress, DNA damage and apoptosis. Chemico-Biological Interactions 162 (3): 212-227. DOI: 10.1016/j. cbi.2006.06.005

Sanyal, T., A. Kaviraj & S. Saha. 2017. Toxicity and bioaccumulation of chromium in some freshwater fish. Human and Ecological Risk Assessment: An International Journal 23 (7): 1655-1667. DOI: 10.1080/10807039.2017.1336425

Sarma, S. S. S., F. Martínez-Jerónimo., T. Ramírez-Pérez & S. Nandini. 2006. Effect of Cadmium and Chromium Toxicity on the Demography and Population Growth of Brachionus calyciflorus and Brachionus patulus (Rotifera). Journal of Environmental Science and Health, Part A 41 (4): 543-558. DOI: 10.1080/10934520600564311

Saucedo-Ríos, S., G. E. Santos-Medrano & R. Rico-Martínez. 2017. Life table analysis reveals variation in thermal tolerance among three species of the Lecane genus (Rotifera: Monogononta). Annals of Limnology - International Journal of Limnology 53, 253-259. DOI: 10.1051/ limn/2017009

Segers, H. 1996. The biogeography of littoral Lecane Rotifera. Hydrobiologia 323 (3): 169-197. DOI: 10.1007/BF00007845

Segers, H. 2007. Annotated checklist of the rotifers (Phylum Rotifera), with notes on nomenclature, taxonomy and distribution. Zootaxa 1564 (1): 1-104. DOI: 10.11646/zootaxa.1564.1.1

Snell, T. W. & B. D. Moffat. 1992. A 2-d Life cycle test with the rotifer Brachionus calyciflorus. Environmental Toxicology and Chemistry 11 (9): 1249-1257. DOI: 10.1002/etc.5620110905 USEPA (United States Environmental Protection Agency). 2002. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. EPA-821-R-02-012. Available online at: https://www.epa.gov/sites/production/files/2015-08/ documents/acute-freshwater-and-marine-wet-manual_2002.pdf (Downloaded: May, 2022)

USEPA (United States Environmental Protection Agency). 2008. Safe drinking water act. Chromium in drinking water. Available online at: https:// www.epa.gov/sdwa/chromium-drinking-water#:~:text=EPA%20 has%20a%20drinking%20water,to%20test%20for%20total%20 chromium. (Downloaded May, 2022)

Van Wezel, A. P., D. T. H. M. Sijm., W. Seinen & A. Opperhuizen. 1995. Use of lethal body burdens to indicate species differences in susceptibility to narcotic toxicants. Chemosphere 31 (5): 3201-3209. DOI: 10.1016/0045-6535(95)00181-7

Velandia Guaque, L. M. & Y. S. Montañez Cardozo. 2010. Determinación de la concentración letal media (Cl50-48) del plomo y cromo hexavalente mediante bioensayos de toxicidad acuática utilizando Daphnia pulex. Available online at: https://ciencia.lasalle.edu.co/cgi/ viewcontent.cgi?article=1037&context=ing_ambiental_sanitaria. (Downloaded May, 2022)

Vincent, J. B. 2017. New Evidence against Chromium as an Essential Trace Element. The Journal of Nutrition 147 (12): 2212-2219. DOI: 10.3945/jn.117.255901

Wallace, R.L., T. W. Snell & H. A. Smith. 2015. Phylum Rotifera. In Thorp, J. H. & D. C. Rogers (eds) Thorp and Covich’s Freshwater Invertebrates. vol I: Ecology and General Biology. Elsevier, Waltham, MA, 225-271.

Wong, C. K., & A. P. Pak. 2004. Acute and Subchronic Toxicity of the Heavy Metals Copper, Chromium, Nickel, and Zinc, Individually and in Mixture, to the Freshwater Copepod Mesocyclops pehpeiensis. Bulletin of Environmental Contamination and Toxicology 73 (1): 190-196. DOI: 10.1007/s00128-004-0412-2

Yuan, C., M. Li., Y. Zheng., Y. Zhou., F. Wu & Z. Wang. 2017. Accumulation and detoxification dynamics of Chromium and antioxidant responses in juvenile rare minnow, Gobiocypris rarus. Aquatic Toxicology 190: 174-180. DOI: 10.1016/j.aquatox.2017.07.005

Descargas

Publicado

2023-09-25

Cómo citar

Garza-León, C. V., Fernández-Flores, C. A., Arzate-Cárdenas, . M. A., Rubio-Franchini, I., & Rico Martínez, R. (2023). Efectos diferenciales en la toxicidad y bioconcentración de Cromo hexavalente y trivalente en el rotífero Lecane papuana (Murray, 1913) (Monogononta: Lecanidae): Efectos diferenciales del cromo en el rotífero Lecane papuana. HIDROBIOLÓGICA, 33(3). Recuperado a partir de https://hidrobiologica.izt.uam.mx/hidrobiologica/index.php/revHidro/article/view/1639

Número

Sección

Artículos