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ABSTRACT

Background. Gene expression (GE) plasticity is an acclimation response that allows organisms to adjust
rapidly to environmental changes, providing an adaptive advantage. GE biomarkers are emerging as a valua-
ble tool for linking the organism’s physiological plasticity with the synergetic effects of large-scale climatic
conditions and local impacts such as temperature and nutrients. Objectives. In this study, we investigate the
GE plasticity of the 70-kDa heat shock protein (hsp70) and the carbonic anhydrase enzyme (CA) to confirm
the ability of those two genes as biomarkers of the Cellular Stress Response and Cellular Homeostasis Res-
ponse, respectively. Methods. Using qPCR, we evaluate the GE plasticity of coral colonies from Pocillopora
capitata, Pocillopora damicornis, and Pocillopora verrucosa at the Carrizales reef (Colima coast of Mexico)
naturally exposed to environmental changes in the Sea Surface Temperature (SST), productivity and nutrients
using the cellular density of Symbiodiniaceae and chlorophyll content as health indices. Results. Our results
clearly show GE plasticity in the hsp70 for Pocillopora verrucosa and Pocillopora damicornis related to a daily
environmental change in temperature and nutrients. On the other hand, the CA gene expression shows no
change in response to daily variations. However, there was a significantly high expression of CA and a lower
expression of hsp70in Pocillopora capitata. Furthermore, we found no significant differences in the health in-
dices, suggesting some degree of physiological plasticity in Pocillopora corals like its extensive morphological
plasticity that could reflect different adaptation capacities to low temperatures and high nutrients during the
spring season in the central Mexican Pacific. Gonelusions. Evaluating the phenotypic plasticity (morphology
and molecular physiology) could help identify coral colonies with a more significant potential to survive en-
vironmental stressors. The latter is an essential consideration for managing, conserving, and restoring coral
reefs in the Mexican Pacific.

Keywords: coral acclimatization, molecular physiology, phenotypic plasticity

RESUMEN

Antecedentes. La plasticidad de la expresion génica (GE) es una respuesta inmediata de aclimatacion al
cambio ambiental que puede proporcionar una ventaja adaptativa. Los biomarcadores de GE estan emer-
giendo como una herramienta valiosa para vincular la plasticidad fisiologica del organismo con los efectos
sinérgicos del cambio climatico y el impacto local como la temperatura y nutrientes. Objetivos. Investigamos
la plasticidad de la expresion de genes que codifican para la proteina de choque térmico de 70-kDa (hsp70)
y la enzima anhidrasa carbdnica (CA) para confirmar su utilidad como biomarcadores de la respuesta de
estrés y de homeostasis celular, respectivamente. Métodos. Evaluamos la GE mediante gPCR en colonias de
corales Pocillopora capitata, Pocillopora damicornis'y Pocillopora verrucosa del arrecife Carrizales (Colima,
México) expuestas a un cambio natural en la temperatura de la superficie del mar (SST), productividad pri-
maria y nutrientes utilizando la densidad de Symbiodiniaceae y el contenido de clorofila como indicadores
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de salud. Resultados. La plasticidad de la GE de hsp70 en Pocillopora
damicornis y Pocillopora verrucosa se asocia con la variacion diaria
de temperatura y nutrientes, mientras que el gen de la CA no muestra
cambios de expresion relacionada con esta variabilidad. Sin embargo,
en Pocillopora capitata se encontrd una expresion significativamente
mayor de CA'y una menor expresion de hsp70. Estos resultados reflejan
un grado de plasticidad fisiolégica en corales Pocillopora similar a la
extensa plasticidad morfoldgica dentro de este género, lo que podria
sugerir diferentes capacidades de adaptacion a la temporada primave-
ral de bajas temperaturas y alto contenido de nutrientes en la region.
Conclusiones. Evaluar la plasticidad fenotipica (morfologia y fisiolo-
gia molecular) podria ser util para identificar colonias de corales con
un mayor potencial de sobrevivencia al estrés ambiental. Lo anterior
resulta relevante para la conservacion, manejo y restauracion de los
arrecifes de coral del Pacifico mexicano.

Palabras clave: aclimatacion coralina, fisiologia molecular, plasticidad
fenotipica

INTRODUCTION

Coral reefs currently face the challenges of increased sea surface
temperatures and severe changes in ocean chemistry due to global
warming and ocean acidification (Hughes et al., 2017) under an unpre-
cedented climate change crisis (Barnes et al., 2022). In addition, ac-
celerated industrialization, urbanization, and agriculture have played a
significant role in coral reefs’ degradation through eutrophication, sedi-
mentation, and turbidity (Suggett & Smith, 2020; Donovan et al., 2021).
Those environmental challenges, if extreme and prolonged, cause signs
of severe stress effects on coral calcification, and massive bleaching
and mortality due to the loss of the endosymbiotic relationship between
corals and Symbiodiniaceae (Eakin et al., 2019).

Recent studies, however, have shown that differential changes in
gene expression, via physiological plasticity, between and within coral
species (Rivera et al., 2021; Strader & Quigley, 2022) could contribute
to emergent stress responses such as thermal tolerance (van Oppen &
Oakeshott, 2020; Avila-Magaria et al., 2021) and resistance to ocean
acidification (Yuan et al., 2019; Scucchia et al., 2021); with particular
links between specific environmental stressors (nutrient/thermal) that
could benefit or synergistically affect heat-stressed corals at the cellular
level (Rodriguez-Casariego et al., 2020; Montalbetti et al., 2021; Thum-
masan et al., 2021) resulting in tolerant and susceptible populations
that show distinct transcriptional resilience and acclimation potential
(Savary et al., 2021; Drury et al., 2022). The latter highlights the ability
of gPCR-based gene expression biomarkers to elucidate gene expres-
sion plasticity (Poli et al., 2017) and their potential as molecular tools to
assess and predict coral reef health and function under climate change
scenarios (Hook et al., 2014; Palumbi et al., 2014; Zoccola et al., 2016),
with further applications on coral reef restoration and conservation as
an aid in determining what readily quantifiable phenotypes are most
indicative of resilience (Parkinson et al., 2020; Kenkel & Wright, 2022).

Molecular markers (biomarkers) are defined as early detectable
changes in the expression of one or several genes that indicate phy-
siological effects or alterations (Smith et al., 2009), and those gene
expression biomarkers have been widely used to measure environmen-
tal and anthropogenic impacts on marine species (Hook et al., 2014;
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Tarrant et al., 2019). As the earliest steps of an organism’s response
to environmental stress occur at the molecular level comprising the
cellular stress response (CSR), gene expression analyses of the CSR
provide a valuable tool to link an organism’s physiology with large-scale
climatic conditions (Kenkel et al., 2014). The CSR is activated only by
severe stress, which causes a proportional increase in macromolecular
damage and exceeds the elastic limit of cellular homeostasis (Kiiltz,
2020); once cell damage control has taken place and cells have been
repaired, a complementary response called the cellular homeostasis
response (CHR) is triggered to reestablish homeostasis under the new
environmental conditions (Kiiltz, 2005). Therefore, gene expression
analyses of the CSR and CHR genes have been proposed as a standard
metric for quantifying stress and evaluating an organism’s condition in
situ (Evans & Hofmann, 2012).

The CSR genes include those coding for molecular chaperones of
the Hsp family (hsp110, hsp90, hsp70, hsp40, hsp60, and small Hsps),
antioxidants, redox enzymes, and enzymes that mitigate stress-induced
damage to cellular components such as membranes, proteins, and DNA
(Kiiltz, 2005; Shitaoka et al., 2021); while the CHR genes include those
coding for Ca** homeostasis enzymes, ribosomal proteins, cytoskeleton
and, in the case of calcifying/photosynthetic organisms (such as corals),
extracellular matrix proteins and the carbonic anhydrase enzyme family
(Kenkel et al., 2013, 2018). The immediate up-regulation of the Hsps
family is a ubiquitous, vital, and dynamic response associated with
thermal stress tolerance and bleaching resistance (Barshis et al., 2013;
Palumbi et al., 2014; Poli et al., 2017; Zhang et al., 2018), in which the
coral holobiont expresses the genes at high levels at all times in stress-
ful conditions/locations (Mayfield et al., 2013, 2019). Furthermore, the
carbonic anhydrase (CA) isoforms are a potential biomarker family for
global and local impacts in calcifying organisms (Zebral et al., 2019),
such as ocean acidification and contamination effects in corals (Kenkel
etal.,, 2014, 2018; Zoccola et al., 2016).

Before the expression of any gene can be applied as a universal
biomarker, however, there must be an understanding of its promises
and limitations concerning natural environmental sensitivity, spe-
cies-specificity response, environmental history, and current anthropo-
genic impacts and how expression patterns relate to the physiological
and ecological consequences of stress tolerance and resilience due to
those varying factors (Kenkel et al., 2014; Rivera et al., 2021; Drury et
al. 2022). For instance, the hsp70 gene expression can change dras-
tically with a variety of environmental stress such as extreme tempe-
ratures (high or low), high light intensity and salinity changes, nutrient
enrichments, and cellular stress caused by coral bleaching and patho-
gen invasion in corals (Seveso et al., 2016; Zhang et al., 2018; Delli-
santi et al., 2022). Furthermore, when nutrient enrichment is coupled
with thermal stress, severe damage occurs to the coral holobiont of
Pocillopora damicornis (Linnaeus, 1758) (compared with the individual
effects) due to the Hsps upregulation-induced apoptosis and bleaching
mechanism amplification by high nitric oxide (NO) production (Thum-
masan et al., 2021).

This study aims to confirm and validate the ability of the hsp70 and
CA genes as biomarkers of differential stress responses and acclima-
tion potential in corals under natural high nutrient concentrations and
low thermal variations. For this, we performed a field study of the hsp70
and CA (qPCR-based) gene expression on Pocillopora capitata Verrill,
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1864, P damicornis, and Pocillopora verrucosa (Ellis & Solander, 1786)
(Pocillopora mtORF type 1; sensu Pinzén & LaJeunesse, 2011) from the
Mexican Pacific. We mainly chose those biomarkers because they have
proven effective in identifying gene expression plasticity in Pocillopora
(Delgadillo-Nufio et al., 2020). Therefore, we hypothesize that equally
healthy corals assessed through Symbiodiniaceae density and chloro-
phyll content will have some level of gene expression plasticity as part
of a differential acclimation and adaptation potential, having the highest
plasticity in the most abundant corals at the Carrizales reef, which could
explain its differences in coverage and frequency (Reyes-Bonilla et al.,
2013).

Such new information will highlight the importance of including
the evaluation of phenotypic plasticity (morphology/molecular physio-
logy) and temporal variability (daily/seasonal) to accurately predict and
anticipate Pocillopora coral’s response to future conditions. Moreover,
knowing which readily quantifiable Pocillopora phenotypes could have
lower or higher resilience under global change scenarios should be
an essential consideration for the experimental designs, management
plans, and conservation and restoration efforts of coral reefs in the
Mexican Pacific.

17

MATERIALS AND METHODS

Study area. The Carrizales coral reef is located on the central Mexican
Pacific at the Colima coast (19°05'42” N, 104°26°21" W) (Fig. 1), which
is on the list of Priority Marine Regions (RMP) as part of the Punta Gra-
ham-El Carrizal PMR#27 (Arriaga-Cabrera et al., 1998); such regions
are a framework to propose new natural protected areas in Mexico due
to their high biodiversity potential and value (Arriaga-Cabrera et al.,
2009). Accordingly, the Carrizales reef is a relatively well-developed,
undisturbed, and ecologically rich coral community (Lifian-Cabello &
Michel-Morfin, 2018) dominated by branching corals (Pocillopora spp.)
at shallow and mid-shallow depths (1 to 8 m), with a change in domi-
nance by encrusting and submassive corals (Porites spp. and Pavona
spp.) in deeper waters (8 to 10 m), with fewer records of Psammoco-
ra spp. (Reyes-Bonilla et al., 2013), similar to other coral reefs in the
central Mexican Pacific (Hernandez-Zulueta et al., 2017). Coral species
occupy many microenvironments within the reef (Reyes-Bonilla et al.,
2013), with highly variable temporal conditions (Lifidn-Cabello et al.,
2016; Delgadillo-Nufio et al., 2020). We focused on low temperatures
and high nutrients during the spring-dry season (Mufiz-Anguiano et al.,
2017) to reduce the specific conditions of poor light quality and high
turbidity and sedimentation during the rainy season.
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Figure 1. Location of the Carrizales reef on the coast of Colima, central Mexican Pacific.
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Morphospecies identification. During the last week of April 2016, we
used SCUBA diving in the Carrizales reef to visually identify the three
most abundant Pocillopora morphospecies based on the macro-mor-
phology of the colonies (after Schmidt-Roach et al., 2014), namely P,
capitata, P damicornis, and P. verrucosa nominal species (after Veron
et al., 2016). However, considering the discrepancies between mor-
phological and molecular identification (Gélin et al., 2017; Johnston et
al., 2017), those are regarded here, according to Pinzon & LaJeunes-
se (2011), as Pocillopora morphospecies of a single genetic lineage
(mtORF type 1). No other phenotypic characteristics besides macro
skeletal morphology were considered in our study (i.e., color pheno-
types or rare morphologies). Nevertheless, all colonies were recorded in
situ (photographically) for further revision.

Sampling design. After visual identification, we carried out two sam-
plings separately on April 22 and 24, 2016. To reduce the effects of light
intensity on the hsp70 and CA gene expression and Symbiodiniaceae
indexes (Delgadillo-Nufio et al., 2020) and ensure as much as possible
that environmental variation corresponded to temperature and nutrient
conditions, all samplings were conducted at midday, from the top of co-
ral colonies at 3 m depth within the main body of the reef avoiding any
microenvironments such as large rocks, caves, sandy patches, and iso-
lated or separated colonies (Reyes-Bonilla et al., 2013). We collected 72
coral fragments (~1 cm?) from 36 different colonies of Pocillopora mor-
phospecies that occurred in sympatric groups (i.e., one coral colony of
P, capitata, P. damicornis, and P, verrucosa were next to the other); each
group of sympatric morphospecies was established as an independent
experimental sampling unit (n = 6) and those were separated at least 5
to 10 meters to reduce the potential of having collected clones.

Hydrographic analysis. We collected three samples of seawater (200
mL) on each of the sampling days (April 22 and 24, 2016) at 2 m depth
on the Carrizales reef and 1 m close to the coral colonies for the deter-
mination of dissolved inorganic nutrients (aliquots of 50 mL) according
to the methods described by Strickland & Parsons (1972) and Grasshoff
et al. (2009) using a segmented flow autoanalyzer (Skalar SanPlus II).
These parameters were used as a proxy of the environmental varia-
tion at the local scale independent of the microenvironment. Given the
lack of temperature measurements in the sampling site, we used sea
surface temperature records in the study area made by the Red Mareo-
grafica at Manzanillo station of the Centro de Investigacion Cientifica
y de Educacion Superior de Ensenada (CICESE) (http://redmar.cicese.
mx/emmc/DATA/MNZN). Additionally, for the mesoscale, we used tem-
perature and chlorophyll data from satellite images (8 days compound
at processing level 3) from the MODIS Aqua sensor (http://oceancolor.
gsfc.nasa.gov).

Total RNA isolation. The excess of RNALater from coral fragments sto-
red at -20 °C was removed, and coral fragments were crushed with a
sterile porcelain mortar and pestle. Inmediately, ~100 mg of the slu-
rry was placed in 1.5 mL microcentrifuge tubes with 1 mL of TRizol
Reagent (Life Technologies©) and homogenized using a mechanical
disruptor (FastPrep®24, MP Biomedicals, Santa Ana, California, USA).
We isolated total RNA from each sample following the manufacturer’s
specifications and, according to Anderson et al. (2016), up to 2 ulL of 6
M HCI was added to avoid the neutralization reaction that occurs be-
tween the calcium carbonate of the skeleton and the acidity of TRIzol.
Total RNA was eluted in 50 pL of RNase-free water. The quantity and
quality of the nucleic acid were analyzed using a Nanodrop® spectro-
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photometer and through visual inspection in 1.5 % agarose gel. DNA
contamination was removed from the RNA samples by treatment with
the enzyme DNase | (RNase-Free), following the manufacturer’s speci-
fications (Invitrogen, Thermo Fisher Scientific Inc). RNA samples were
stored at -80 °C until further processing to avoid degradation.

Gene expression. For the analysis of qPCR-based gene expression
biomarkers (hsp70 and CA), we used sequence-specific primers for
Pocillopora corals obtained from the literature (Mayfield et al., 2013)
and the 18S ribosomal RNA gene (18S rRNA) as an internal control
designed from Pocillopora sequences on the GenBank (accession No.
HMO013849.1). The set of primers was as follows: 1) hsp70 (Forward:
5'-CCGCCGGTGGGGTAATGA-3', Reverse: 5'-CTTGTCGCGTTTCTTCT-
CG-3'), 2) CA (Forward: 5'-AGGATGATGAGGAGGATGAGG-3', Reverse:
5'-ATAGCAGGGAGGGGTGGTAA-3'), and 3) 18S rRNA (Forward: 5'-GGTG-
GTTGAGATGGATGG-3', Reverse: 5'-ACGTAGGCAGGCACC-3'). Before the
gene expression analysis of the biomarkers, we performed a reverse
transcription of RNA (200 ng) into complementary DNA (cDNA), using
the High-Capacity cDNA Reverse Transcription Kit and following the
manufacturer’s specifications (Applied Biosystems, Life Technologies,
CA). Aliquots of 20 ng pL™" of cDNA were then used for the gPCR am-
plifications, carried out in 20 pL of the total volume containing 6.3 pL
of 2X SYBR Green Master Mix (Applied Biosystems), 0.6 pL of one set
of primers (10 mmol L), 5.0 pL of the cDNA sample (20 ng pL™"), and
6.9 pL of RNase/DNase-free water in a StepOnePlus™ thermocycler
(Applied Biosystems), with the following thermocycling conditions: 1)
“hot start” at 95 °C for 10 min, 2) amplification of 40 cycles at 95 °C for
15 s followed by 60 s at 60 °C, and 3) fusion at 95 °C for 15 s followed
by 60 s at 60 °C and 15 s at 95 °C. Results expressed the relative
mRNA expression of target genes and internal control using the 2-24¢
quantification method (Schmittgen & Livak, 2008).

Health indices. For Symbiodiniaceae cells extraction, coral fragments
previously preserved in 10 mL of 10 % formaldehyde were thoroughly
rinsed with distilled water and incubated in 10 mL of 4M NaOH at 37.5
°C until the tissue was removed from the skeleton (modified from Za-
moum & Furla, 2012). The cell density of Symbiodiniaceae was quanti-
fied from an aliquot of 10 pL using a Neubauer hemocytometer (n = 8
replicates). Results express Symbiodiniaceae cells per unit of surface
area occupied by the living tissue in the coral skeleton (cells cm-2), ob-
tained by measuring each fragment with millimeter precision calipers.
For Chlorophyll (Chl &) extractions, we used ~ 100 mg of frozen frag-
ments crushed in @ mortar and placed in microcentrifuge tubes with 1.5
mL of 100 % methanol stored in the dark for 24 h (4 °C). The resulting
slurry was sonicated for 15 s and then centrifuged at 1 500 g for 5 min
(4 °C), and the supernatant was used immediately for quantification. Pig-
ment measurements were performed in duplicates with a Spectronic®
Genesys™ 5 spectrophotometer (Thermo Fisher Scientific), using a 96
wells microplate. Chl a concentration was calculated at 664 nm (Je-
ffrey & Humphrey, 1975), using the extinction coefficient 90 L gm=' cm™
(Vernon, 1960), with the recommended turbidity correction. Results ex-
pressed pigment concentration per unit of surface area (Chl a ug cm-2).

Statistics. We used R software (R Core Team, 2013) to perform all
statistical analyses; we proved normality with the Shapiro-Wilk test
and homoscedasticity with Bartlett’s test for all data (95 % confidence
intervals). As normality and homoscedasticity assumptions were true
for nutrients and gene expression data, a two-sample unpaired t-test
was used to analyze significant differences in nutrients between days
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(P > 0.05) and a two-way analysis of variance (ANOVA) followed by
multiple comparisons (Tukey’s test) to evaluate significant differences
of gene expression between days and morphospecies (P > 0.05). In
the cases when normality or homoscedasticity assumptions were fal-
se (Symbiodiniaceae cell density and Chl a concentration), a non-pa-
rametric two-way Friedman test and pairwise sign test were used to
evaluate significant differences between days and morphospecies (P >
0.05). Additionally, we performed a principal component analysis (PCA)
using the built-in R functions prcomp to identify differences between
morphospecies in Symbiodiniaceae cell density, Chl a concentration,
and changes in the differential expression of hsp70, and CA genes. A
logarithmic transformation was applied to eliminate the data variation
due to the unit difference.

RESULTS

Remote sensing showed low SST (22 °C) and high productivity (80 mg
m~%) along the central Mexican Pacific (including the Manzanillo coast)
during the first week of April 2016 (March 29-April 05). Then, the SST
increased to 26 °C, while productivity decreased (10 mg m=3) during the
second week (April 06-April 13). The SST continued to change between
22 and 26 °C during the third (April 14-April 21, 2016) and fourth week
(April 22-April 29), but productivity remained low until the end of April
2016 (Fig. 2). In the same way, the temperature records close to the
Carrizales reef showed a thermal change from 22 to 24 °C in nine days
(April 01 to 09), followed by an increase from 24 to 26 °C in another
nine days (April 10 to 18). Later, the temperature dropped from 26 to
24 °C in only three days (April 19 to 21) and suddenly decreased from
24 °C on the first day of sampling (April 22) to reach almost 20 °C on
the second day of sampling (April 24), to increase again in the next day
at 24 °C and remain until the end of April 2016 (Fig. 3). The results of
the t-test showed significant variations in dissolved inorganic nutrients
(P < 0.05), with higher nitrogen concentrations on April 22, while phos-
phorus and silicates were higher on April 24, 2016 (Table 1).
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For the gPCR-based biomarkers, the relative hsp70 mRNA expres-
sion of P damicornis and P verrucosa morphospecies showed signi-
ficant differences between the two days of sampling (P < 0.05). Fur-
thermore, both morphospecies showed significantly higher values of
relative mRNA expression (P < 0.05) compared to those of P, capitata
morphospecies (Fig. 4A). On the other hand, the relative mRNA expres-
sion of CA did not show significant differences between the sample
days for none of the three Pocillopora morphospecies. However, the
expression of CA in P, capitata morphospecies showed significantly (P
< 0.05) higher values of relative mRNA expression compared to those
of Pdamicornis morphospecies and P. verrucosa morphospecies (Fig.
4B). Regarding the health indices, there were no significant differences
in Symbiodiniaceae density or chlorophyll between sampling days and
Pocillopora morphospecies (Fig. 5A and B). Finally, the principal compo-
nent analysis showed a clear separation between P damicornis and P.
verrucosa morphospecies from P, capitata morphospecies. The first two
principal components (PCs) explained 63.5 % of the variation (Fig. 6).

DISCUSSION

Interpreting how or whether a coral holobiont phenotype (i.e., a mor-
photype, morphospecies, or ecomorph) can employ gene expression
plasticity to ensure short and long-term survival (Rivera et al., 2021) will
be critical for understanding global and local impacts of climate change
and coastal anthropogenic activities (Hughes et al., 2017; Donovan et
al., 2021) across diverse taxa (Suggett & Smith, 2020; Barnes et al.,
2022) and in determining which phenotypes are most indicative of re-
silience to those impacts (Parkinson et al., 2020; Rivera et al., 2021).
In this sense, our study proves some degree of physiological plasticity
through diversity in the cellular response between the three Pocillopora
morphospecies and provides determining information on their distinc-
tive acclimation responses which could suggest different capacities for
genetic or biochemical adaptation (Bernhardt & Leslie, 2013; Stillman
& Paganini, 2015) in Pocillopora morphospecies of the Carrizales reef.
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sing level 3) for the central Mexican Pacific in April 2016. The dot marks the location of the Carrizales reef.

First, we observed a significant increase in the hsp70 gene expres-
sion in Pocillopora morphospecies (Fig. 4A), clearly associated with the
short-term temperature change within the sampling days (+2 °C in 3
days, followed by +4°C in 24 h) at Manzanillo coast (Fig. 2) coupled
with high nutrients concentration at Carrizales reef, particularly in Nitro-
gen (7-9 uMoles) (Table 1); without significant changes in the symbiotic
condition whatsoever (Fig. 5A and B). Both the changes in temperature
(up or down) and the high nutrient concentrations can cause positi-
ve expression of Hsp proteins (Seveso et al., 2016; Thummasan et al.,
2021), and these conditions occur naturally during the spring season
at the Carrizales reef (Mufiz-Anguiano et al., 2017). Therefore, as ex-
pected, the prominent molecular response in Pocillopora morphospe-
cies was an induction of the hsp70 gene related to local environmental
changes in the short term. However, the magnitude and direction of this

Table 1. Comparison of nutrient concentrations (Average + SD) in Carri-
zales reef between April 22 and April 24, 2016 (n = 3 samples).

Nutrient April 22 April 24 t p-value
NO, + NO, (uMoles) 9.20 +0.14 7.62+0.28 8.7860 0.0005
NH, (uMoles) 0.28+0.03 0.22+0.02 3.3793 0.0139
PO, (uMoles) 1.16 +0.23 2.41+0.12 -8.4408 0.0005
DIN:PO, ratio 843+145 3.26+0.20 4.9741 0.0038
Si0, (uMoles) 12.25+0.56 14.58 + 0.51 -5.3431 0.0030

plasticity were different between P damicornis/P. verrucosa and P. ca-
pitata (Fig. 6), suggesting two different levels of hsp70 gene expression
plasticity in Pocillopora morphospecies: higher plasticity (P damicor-
nis/P. verrucosa) and lower or reduced plasticity (P capitata).

As we hypothesized, Pocillopora morphospecies would have some
degree of physiological plasticity at the molecular level when exposed
to environmental stress (thermal/nutrients). In terms of gene-by-gene
expression analysis, plasticity occurs after the environmental change
(stress signal) when the expression of a gene significantly increases
to reach a peak of expression under the new stress condition (Hédouin
& Berteaux-Lecellier, 2014; Rivera et al., 2021), in this case, thermal
and nutrients stresses. Higher hsp70 levels in Pocillopora corals are
generally related to a protective response toward environmental and
cellular stressors (Poli et al., 2017; Zhang et al., 2018; Dellisanti et al.,
2022), with the tolerant phenotypes exhibiting higher expression levels
than the susceptible ones.

This is true when stress-tolerant populations show higher baseli-
ne expressions before the stress condition and less (induction) positive
change in gene expression after (Poli et al., 2017), which confers pro-
tection from frequent stresses through a pre-emptive response (front-
loading) and by maintaining cellular integrity under constant pressure
(Brener-Raffalli et al., 2022). While low baseline expression and a high
induction are observed in sensitive populations (Rivera et al., 2021),
this has been observed in high thermal regimens mainly (Kenkel et al.,
2013; Palumbi et al., 2014; Poli et al., 2017). However, this is not the
case in our results, in which a lower baseline expression of the hsp70
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gene was shown before the condition without stress for all the mor-
phospecies studied, with the sole difference in the magnitude of the
hsp70 gene expression between P. damicornis/P. verrucosa and P, capi-
fata after the environmental change.

In our study, the lower plasticity of the hsp70 gene expression could
suggest some tolerance to the combination of low temperature and
high nutrient stress in P, capitata morphospecies by a lowered induction
of the hsp70 gene expression. This is a more general pattern also asso-
ciated with genes involved with thermal stress (Bay & Palumbi, 2017)
as part of a cellular response that appears muted (dampening) under
the new stress condition, which allows for reducing the energy require-
ment of the stress response and utilizes it in cellular maintenance and
homeostasis (Rivera et al., 2021). The latter is supported by a higher
constitutive expression of the CA gene through the sampling days in P
capitatamorphospecies, which suggests that CA gene expression could
have been sustained for more extended periods to maintain cellular ho-

meostasis during the highly variable conditions, of low temperature and
high nutrients, on the Carrizales reef during the spring season.

Broadly, the positive regulation of the CA (as an adaptive mecha-
nism) sustains all the vital metabolic processes in the coral holobiont,
such as photosynthesis, calcification, cellular homeostasis, and growth
simultaneously (Bertucci et al., 2013). This process of adaptive meta-
bolism by increasing CA gene expression in P. capitata morphospecies
could help to cope with the energy requirements of an environmental
stress regime (Kiiltz, 2003), reflecting a higher resilience potential by
long-term physiological acclimation (Kenkel et al., 2014, 2020), sin-
ce higher induction of hsp70 gene comes at a substantial energy cost
(Kenkel etal., 2013; Poli et al., 2017). Therefore, the differences in basal
expression of the CA gene and the levels of hsp70 gene induction reveal
some physiological plasticity between P, capitata and P damicornis/P.
verrucosa, probably through diversity in the cellular response of the
morphospecies, which could confer slight differences in stress toleran-
ce and resilience.
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Figure 5. Health indexes in Pocillopora morphospecies from the Carrizales reef on April 22 and 24, 2016; A) Symbiodiniaceae density and B) Chlorophyll (a + ¢2).
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Figure 6. Principal component analysis (PCA) of the hsp70 and CA mRNA relative expression, Symbiodiniaceae density and Chlorophyll content in Pocillopora mor-

phospecies on April 22 and 24, 2016 from the Carrizales reef.

Finally, the results suggest that there was no substantial effect on
the ability of Symbiodiniaceae to capture light (Brown, 1997; Douglas,
2003), translocate nutrients to coral host cells (Saxby et al., 2003; Hoe-
gh-Guldberg et al., 2005; Smith et al., 2005), and maintain metabolic
homeostasis of the holobiont (Hinrichs et al., 2013), and this is another
important consideration in our study since the coral bleaching machi-
nery-induced apoptosis seems absent. That is, no evidence of Symbio-
diniaceae and Chl a loss, coral de-pigmentation, or tissue detachment
due to the oxidative stress-induced mechanism, which increases ROS
levels, damages the photosynthetic machinery, alters the ionic balance
in the symbiont thylakoid membranes and disrupts the symbiosome
microenvironment (Rodriguez-Casariego et al., 2020; Thummasan et
al., 2021). Therefore, no differences in energy supply are inferred, and
the hsp70 and CA gene expression levels could be considered within
the acclimation or adaptation potential with the sole difference in the
response thresholds of P, capitata and P. damicornis/P. verrucosa.

In conclusion, the most prominent result of this study could be in-
terpreted as a diversity in the CSR and CHR of Pocillopora morphospe-
cies that affected the patterns of magnitude and direction of physiologi-
cal plasticity (high or reduced), as shown by the constitutive expression
and induction of the CA and hsp70 genes, respectively. We demons-
trated that P, capitata and P damicornis/verrucosa could have specific
tolerance to cope with the natural stressful conditions in the Carrizales
reef. However, this only partially explains the differences in coverage
and frequency between the three morphospecies in the Carrizales reef
(Reyes-Bonilla et al., 2013; Hernandez-Zulueta et al., 2017) and might
seem contradictory for the spatial differences of the three morphos-
pecies through the Mexican Central Pacific (see supplementary ma-
terial on Hernandez-Zulueta et al., 2017) so, further study of complete
transcriptional response (i.e., RNAseq) is needed for a better unders-
tanding of how Pocillopora morphospecies are (more or less) resilient
to environmental changes and anthropogenic impacts. Considering that
the Pocillopora morphospecies studied here are potential early coloni-

zers and ecological activators of impacted reefs (Buitrago-Lopez et al.,
2020) and some of the most critical and principal reef-builders of the
Tropical Eastern Pacific (Cabral-Tena et al., 2020); our results could be
used for linking phenotypic plasticity (morphological and physiological)
with some degree of diversity in the cellular response of Pocillopora co-
rals, and this could have important implications for future experimental
designs and the ecological success of management plans, and con-
servation and restoration efforts of coral reefs in the Mexican Pacific.
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