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ABSTRACT
Seagrass communities in tropical reef systems are situated in a distinct environmental setting than other seagrass 
beds around the world: they are exposed to high light intensities and low nutrient concentrations in carbonate sedi-
ments. Little is known about the forces which determine the community dynamics in these systems. Here we review 
studies realized over the last two decades at Puerto Morelos reef lagoon, Mexican Caribbean (Latitude 20o52´N) which 
highlight the dynamics of seagrasses and rooted macroalgae at time distinct frames. Daily fluctuations in physiology, 
growth and release of gametes or pollen are driven by light and possibly by herbivore pressure. Growth and sexual 
reproduction of the seagrasses and algae show seasonal patterns driven by the annual solar cycle. The temporal dy-
namics of the algae are more intense than those of the seagrasses, possibly due to their respective clonal expansion 
strategies and rates. Sexual recruitment serves to colonize cleared areas and maintains high genetic variability within 
populations as was shown for Thalassia testudinum. Hurricanes have a small effect on the seagrass-algal community, 
selectively removing certain species, but the foundation species T. testudinum and the main producer of calcareous 
sand Halimeda incrassata are resistant to hurricanes and full community recovery occurs within 2-3 y. Gradual but 
persistent changes in community structure (relatively more investment in above-ground biomass) and composition 
(higher relative dominance of faster growing species) reveal increasing input of nutrients in this originally considered 
pristine and oligotrophic habitat.
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RESUMEN
Las condiciones ambientales de las comunidades de pastos marinos en sistemas arrecifales tropicales son distintas a 
las de otras praderas del mundo. En este ambiente están expuestas a altas intensidades de luz y bajas concentraciones 
de nutrientes en sedimentos carbonatados. Se sabe poco sobre la dinámica de los pastos marinos y sus macroalgas 
asociadas en las lagunas arrecifales. En esta revisión bibliográfica, se resumen estudios que abarcaron la dinámica 
comunitaria de los pastos marinos y macroalgas durante las últimas dos décadas en Puerto Morelos, Caribe mexicano 
(Latitud 20o52´N). Las fluctuaciones diurnas en el crecimiento, la fisiología y la liberación de gametos o polen están in-
fluenciadas por el ciclo diurno de luz, y posiblemente por la presión de los herbívoros. El crecimiento y la reproducción 
sexual muestran patrones estaciónales relacionados con los ciclos solares anuales. La dinámica temporal de las ma-
croalgas fijas al substrato, es más intensa que la de los pastos marinos, lo cual se relacione con sus tasas y estrategias 
de expansión clonal. El reclutamiento sexual sirve para colonizar áreas perturbadas, y para mantener la variabilidad 
dentro de las poblaciones, tal y como se demostró para Thalassia testudinum. Los huracanes tienen un efecto pequeño 
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INTRODUCTION

Many tropical reef systems are composed of a mosaic of the in-
terconnected mangrove forests, seagrass beds and coral reefs 
extending from the shoreline to the open ocean (Ogden & Gladfel-
ter, 1983; Moberg & Folke, 1999). Coral reefs are the best-known 
and most widely studied of these three components, because of 
their beauty, high biodiversity, economic importance, and their 
high susceptibility to human-induced changes including glo-
bal climate change (Hughes, 1994; Hoegh Guldberg et al., 2007). 
Fewer studies exist on the threatened mangrove forests (Valiela 
et al., 2001), but the extensive seagrass beds covering the sedi-
ments of the shallow reef lagoons between the crests of fringing 
or barrier reefs and the shoreline have received even less atten-
tion of the scientific community and general public, which Duarte 
et al. (2008) attributed to a reduced “charisma”, greatly under par 
to its ecological importance.

Seagrasses are marine flowering plants with global distri-
bution that form extensive meadows and are amongst the most 
productive ecosystems on Earth (Mateo et al., 2006), sustaining 
a diverse fauna (Green & Short, 2003) and large fishery industries 
(Gillanders, 2006). Amongst their ecosystem services are carbon 
sequestration (Mateo et al., 2006), cycling of nutrients (Romero 
et al., 2006), nursery habitat (Heck et al., 2003) and protection of 
coastal areas through stabilization of sediments (Madsen et al., 
2001). Coral reef systems obtain their optimal development in the 
warm oligotrophic coastal waters. In these tropical or subtropical 
waters, in contrast with temperate ones, seasonal changes are 
less prominent or absent (Kain, 1989). But on the other hand, many 
tropical systems are subject to major periodical disturbances by 
hurricanes (cyclones or typhoons). The transparent waters pro-
vide a high light environment in contrast with many other more 
turbid coastal waters where the seagrasses are found (Dennison 
& Alberte, 1985; Zimmerman et al., 1991, Carruthers et al., 2002). 
Nutrient concentrations are generally low in reef systems (Carru-
thers et al., 2002) and the carbonate sediments of these systems, 
in contrast with terrigenous ones, tend to have lower availability 
of nutrients in their pore-water due to distinct biogeochemical 
interactions (Erftemeijer & Middelburg, 1993; Van Tussenbroek 
et al., 2006a). In the reef systems, multiple interactions exist bet-
ween the interconnected mangrove forests, seagrass beds and 
coral reefs (Ogden & Gladfelter, 1983; Dahlgren & Marr, 2004). The 

coral reefs function as natural breakwaters, mitigating 75-90% of 
the wave energy under normal conditions (Brander et al., 2004), 
favouring the development of mangrove and seagrasses in calmer 
waters. The geological reefs and sediments can be considered as 
by-products of calcium carbonate produced by reef organisms of 
the reefs and the calcareous algae in the reef lagoons (Hubbard 
et al., 1990). The seagrass and mangrove communities support 
the existence of the reefs through the export of organic materials 
and protection of the reefs from direct terrestrial runoffs (Alongi 
& McKinnon, 2005) and providing nurseries for coral reef fishes 
and other reef fauna (Nagelkerken et al., 2000, 2001; Verweij et 
al., 2006; Unsworth et al., 2008). The biodiversity of seagrass beds 
near the reefs is high, supporting a rich flora (UNESCO, 1998; 
Van Elven et al., 2004) and fauna (e.g. Monroy-Velásquez, 2000; 
Eggleston et al., 2004). However, a comprehensive database of 
fauna associated to seagrass beds in reef systems is lacking, thus 
absolute comparison with other seagrass communities is not pos-
sible. A typical flora associated to seagrasses in reef lagoons is 
the abundant and diverse community of rooted (rhizophytic) algae 
(UNESCO 1998; Cruz-Palacios & Van Tussenbroek, 2005). Most of 
these algae are calcareous and they are important producers of 
calcareous sand (Van Tussenbroek & Van Dijk, 2007).

The distinct setting of seagrass communities in reef systems, 
compared to other coastal seagrass beds around the world, most 
likely has repercussions on the ecosystem dynamics and functio-
ning. The aim of the present work is to highlight the dynamics of 
the rooted plants which inhabit the shallow reef lagoons at dis-
tinct time frames, in order to obtain a better understanding of the 
forces which determine their community structure. The seagrass 
community in Puerto Morelos reef system has received relatively 
more attention than many similar communities, due to the presen-
ce of various marine research institutes, resulting in a concentra-
tion of research efforts of resident and visiting scientists, and will 
therefore be used as a case study in this review.

PUERTO MORELOS REEF LAGOON: GENERAL 
DESCRIPTION

The Puerto Morelos reef system on the NE coast of the Yucatan 
Peninsula (Fig. 1a-c) is an open-ocean connected highly flushed 
coastal system with a water residence time of 3 h under normal 
wave conditions (Coronado et al., 2007). It is situated in the nor-

sobre la comunidad pasto-alga, eliminando selectivamente ciertas especies, pero la especie dominante, T. testudinum 
y la principal productora de arena calcárea Halimeda incrassata, resisten los disturbios causados por los huracanes y 
la comunidad se recupera en 2-3 años. En las últimas dos décadas se han producido cambios paulatinos en la estructu-
ra (relativamente más biomasa de partes de plantas por arriba del sedimento) y composición de la comunidad (con una 
mayor dominancia relativa de las especies de crecimiento rápido), que son indicadores de incrementos en nutrientes 
en este sistema arrecifal que originalmente fue considerado como oligotrófico y prístino.

Palabras clave: Pastos marinos, algas, laguna arrecifal.
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Figure 1a-d. a-c) Geographical position of Puerto Morelos reef lagoon. d) A conceptual diagram of the reef system at Puerto 
Morelos (after Carruthers et al., 2002). In figure C, T: Transect from coast to Reef, H1-2: sites of the simulation experiments of 
hurricanes, C1-4: sites of CARICOMP monitoring: C1: Back-Reef, C2: Lagoon1, C3: Lagoon2, C4: Coast.
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thern part of an extensive barrier-fringing reef complex that ex-
tends from Belize to the Strait of Yucatan. An extended fringing 
reef forms a 2-4 m deep reef lagoon, characterized by calcareous 
sand that is stabilized by the seagrass meadows. Inland wetlands 
are separated from the sea by a 2-3 m high and 100-200m broad 
sand bar (Fig. 1c). Mean surface-water temperatures vary bet-
ween 25.1 °C in mid winter and 29.9 °C in late summer (monthly 
averaged temperature from 1993 until 2005 (Rodríguez-Martínez 
et al., 2010). From November until April cold fronts or “Nortes” 
produce decreases in air and seawater temperature. The average 
rainfall is 1060.6 mm y-1 (data from 1993 to 2004), without a clearly 
defined dry or wet season. During periods of exceptionally heavy 
rains, overflow of mangrove wetlands bring brackish tannin co-
lored waters into the lagoon. The Yucatan limestone is extremely 
karstic and rainwater rapidly infiltrates into the aquifer, resulting 
in the absence of surface drainage or rivers and the water passes 
through an immense network of underground caves and channels 
to vent into the marine coastal areas through submarine springs 
(“Ojos de agua”) and fissures (Fig. 1c). Thus, the lagoon environ-
ment is principally governed by marine conditions and the salinity 
varies little throughout the year (between 35.8 and 36.2‰). The 
hurricane season extends from June to November, peaking bet-
ween August and October. The main hurricanes directly affecting 
this area over the last 25 y were Gilbert (hurricane force 5, Octo-
ber 1988) and Wilma (hurricane force 4, October 2005) and other 
five hurricanes passed close to the study area, but did not have 
a major impact on the biota (Rodríguez-Martínez et al., 2010). The 
mean tidal range is very small (~17 cm) with a maximal variabili-
ty in sea level of 32 cm (Coronado et al., 2007). The water in the 
lagoon is typically oligothrophic with low mean nitrite (0.06 μM), 
nitrate (13.9 μM) and phosphate (0.46 μM) concentrations (1982-
1983, Merino & Otero (1991). Likewise, porewater nutrient con-
centrations within the Puerto Morelos Reef Lagoon (NH4

+ 1.2-3.42 
μM, DIN 2.8-5.1 μM and PO4

-3 1.0-2.7 μM (Duarte et al., 1995; Ca-
rruthers et al., 2005) are low compared to global mean values for 
seagrass meadows of 86μM-NH4

+ and 12 μM-PO4
-3 (Hemminga & 

Duarte, 2000). Puerto Morelos was a small fishing village until the 
early 1980’s, but since it has developed rapidly as tourism has be-
come the main economic activity. Amongst the major attractions 
are the crystal clear seas, the white-sanded beaches and the reef 
ecosystem. The initial population of <1,000 inhabitants in the ear-
ly 1980s developed into a rapidly growing community of ~15,000 
inhabitants in 2008, and the number of hotel rooms experienced 
a exponential increase from ~400 rooms in 1998 to ~6,500 in 2008 
(source INEGI, Mexico). In 1998, Puerto Morelos reef was decla-
red a marine protected area and in average it receives ca. 200,000 
visitors per year (http://www.conanp.gob.mx).

In this park, three seagrass species (Ruíz-Rentería et al., 
1998) and 213 (Dreckmann et al., 1996) or 245 (Collado-Vides et 
al., 1998) macro-algal species have been found. Collado-Vides et 
al. (1998) discerned a significantly distinct phycoflora on the reef 

than in the reef lagoon, the sandy bottom of the reef lagoon being 
characterized by the dominance of green coenotic (siphonous) 
algae. The fauna assemblage in the reef system is diverse and in 
total 669 species of marine invertebrate and vertebrate fauna ha-
ve been recorded (INE 2000). Specific diversity of various faunal 
groups in the reef lagoon have been studied, including copepod 
crustaceans (48 species, Álvarez-Cadena et al., 1998), decapod 
crustaceans (120 species, Monroy-Velázquez, 2000; Briones-
Fourzán et al., 2003), molluscs (48 species, Briones-Fourzán et 
al., 2003), sea-urchins (11 species, Bravo-Tzompantzi, 1996) and 
fish (43 species, Álvarez-Guillén et al., 1986). The majority of these 
studies were not exhaustive and biodiversity of fauna in the reef 
lagoon most likely is much higher.

The rooted vegetation in the reef lagoon is largely comprised 
of the foundation species (dominant primary producer in terms 
of influence and abundance) Thalassia testudinum Bank ex Kö-
nig, accompanied by the seagrass Syringodium filiforme Kützing 
or Halodule wrightii Ascherson and the rhizophytic green algae. 
The densities of S. filiforme or H. wrightii are usually small when 
growing intermixed with T. testudinum, but these seagrasses can 
attain high biomass (> 500 g dry m-2) in narrow coastal fringes 
(Gallegos et al. 1994; Van Tussenbroek 1994a; Ruíz-Rentería et al. 
1998). Sexual reproduction is common for all seagrass species 
(Van Tussenbroek 1994b, unpublished data; Muhlia-Montero, 
2011) and the calcified rhizophytic algae (Van Tussenbroek et al., 
2006b, Van Tussenbroek & Barba-Santos, 2011).

Plants in the reef lagoon most likely do not suffer from low 
light stress throughout their principal depth distribution range. 
The waters are relatively clear (Light extinction coefficient Kd = 
0.19-0.47 m-1, Enríquez & Pantoja-Reyes, 2005). On sunny summer 
days maximal irradiance at the water surface reaches ~2000 μmol 
quanta m-1 s-1 (Enríquez et al., 2002) and a typical T. testudinum 
canopy near the reef at a depth between 2.6-3.0 m receives max. 
~800 and 1300 μmol quanta m-1 s-1 in the winter and summer, res-
pectively (Van Tussenbroek, unpublished data). Carbonate coral 
sediments typically have small iron pools (Duarte et al., 1995) and 
artificial addition of iron to T. testudinum in Puerto Morelos reef 
lagoon resulted in higher concentrations of chlorophyll a in the 
leaves and increased leaf growth, suggesting that this element 
was limiting optimal development of the seagrass (Duarte et al., 
1995). In this oligotrophic system the low leaf tissue concentra-
tions of nitrogen (1.8-2.2 % of total dry weight) and phosphorus 
(0.13-0.19 % of total dry weight, Duarte et al., 1995; Gallegos et al., 
1993; Carruthers et al., 2005) indicate deficiency of these elements 
according to the nutrient limits established by Duarte (1990).

RESULTS AND DISCUSSION

The continuous seagrass-algal vegetation extending along the ki-
lometres-long stretch of coastline of Puerto Morelos reef lagoon 
may appear stable and rather uniform through time at first glance, 
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but the structure of the community at a certain time and place is the 
result of dynamic processes. Knowledge concerning the dynamics 
at distinct time frames aid in understanding the underlying pro-
cesses and driving forces of this apparently stable community.

Diurnal cycles. Fluctuations on a daily basis in Puerto Morelos 
reef lagoon are mostly determined by day-night cycles of irradian-
ce because the tidal amplitude is very low. During at least a part 
of the day, the seagrass canopies are exposed to radiation inten-
sity higher than that required for maximal rates of photosynthe-
sis. Seagrasses have the ability to tolerate high light during solar 
noon by down-regulating their photosynthetic apparatus through 
dissipation of excess irradiance as heat (Larkum et al. 2006). In 
the absence of heat dissipation, the photosynthetic apparatus 
(particularly Photosystem II) is damaged (photoinhibition). But 
the light climate within the canopy of T. testudinum decreases 
through self-shading and the Kd within the canopy varies between 
2.1 and 11.5 m-1 (Enríquez et al., 2002; Enríquez & Pantoja-Reyes, 
2005). The leaves of T. testudinum have a relatively high elonga-
tion rate (~0.25-0.49 cm leaf-1 d-1; annual means 1990-1992, Van 
Tussenbroek 1995), thus a basal leaf section experiences a 2% 
daily increase in photonflux density as it elongates (Enríquez & 
Pantoja-Reyes, 2005). The photosynthetic capacity along the lea-
ves changes accordingly, increasing at first from the base (near 
the sheath with low chlorophyll concentration) to a certain length 
(various cms) and then decreasing again towards the apex, whe-
re the leaves suffer from photodamage (Enríquez & Pantoja-Re-
yes, 2005). The apical sections of the leaves, exposed to the high 
irradiance, show reduced pigment content, leaf absorptance and 
reductions in the quantum yield of Photosystem II, which are indi-
cations of photoinhibition. Photosynthesis by the leaves supports 
aerobic respiration in the rhizomes and roots of the seagrasses, 
but the transport of oxygen often exceeds the respiratory requi-
rements of the below-ground tissue and O2 is released from the 
roots into the sediments (Smith et al., 1984). Thus, apart from the 
deposition of organic matter, the seagrasses affect biogeoche-
mical condition of the sediments through the release of O2 and 
exudates from the roots, stimulating a diverse bacterial communi-
ty (Moriarty & Boon, 1989). This influence on biogeochemical pro-
cesses in the sediments depends on the photosynthetic activity of 
the seagrasses, which is reflected in the redox potential of the se-
diments. The redox potential in a well-developed bed of T. testudi-
num in Puerto Morelos is on average 211 mV higher than adjacent 
sediments without vegetation and the oxidizing capacity of the se-
agrasses is highest at the depths with maximal below-round bio-
mass (Enríquez et al., 2001). The redox potential in the rhizosphere 
declines 45 mV when the incoming irradiance is lowered to 27% 
of ambient light by experimental shading (Enríquez et al., 2001).

The seagrasses show a clear diurnal pattern in physiology 
(Smith et al., 1984) and growth (Williams & Dennison, 1990) re-
lated to photosynthetic activity, and likewise the calcification of 

the calcified rhizophytic algae only occurs during light when the 
algae are photosynthesizing (Van Tussenbroek & Van Dijk, 2007). 
But the rhizophytic algae may maintain high grow rates during 
the night, which has been shown for Caulerpa cupressoides by 
Williams and Dennison (1990). New segments of Halimeda incras-
sata (Ellis) Lamouroux are formed in the dark and obtain their full-
grown size in ~24 h, calcifying during daylight (Hay et al., 1988; 
Multer, 1988, Van Tussenbroek & Van Dijk, 2007). This has also 
been observed for other Halimeda spp. (Hay et al., 1988; Drew & 
Abel, 1990; Larkum et al., 2011) and it is thought to be an adap-
tation to avoid consumption by juvenile parrotfish that are only 
active during daylight (Helfman, 1993; Bruggeman et al., 1994). The 
siphonous green algae also move their chloroplasts away from 
the periphery during the night when they become considerably 
paler. Such circadian migration of chloroplasts has been studied 
in Bryopsis sp. (Menzel & Schliwa, 1986), Caulerpa sp. (whitening 
of the tips of young growing lamina; Dawes & Barilotii, 1969) and 
the segments of an opuntoid species of Halimeda spp. (Drew & 
Abel, 1990). Drew and Abel (1990) hypothesized that the retraction 
of these vital organels from the plant surface may be a protec-
tion from mesograzers such as small green sacoglossan molluscs 
(Fig. 2) at times when they serve no purpose.

Remarkable are the processes of release of gametes of the 
rhizophytic calcareous algae or the pollen grains of the seagrass 
T. testudinum in synchrony with cycles of daylight. Rhizophytic 
algae of the genera Halimeda, Penicillus, Rhipocephalus and 
Udotea produce biflagellate gametes by transporting all cellular 
contents into terminally-located gametangia (Fig. 2). Clifton (1997) 
and Clifton and Clifton (1999) have reported that the release of ga-
metes occurs early in the morning just after dawn and only lasts 
for 15-30 min in Panama, and we have observed similar timing 
of gamete release for the same genera in Puerto Morelos. After 
release of the gametes, only the white calcareous skeleton with 
empty gametangia remain (Fig. 2). Dehiscence of the male flowers 
of the seagrass T. testudinum is also synchronized but occurs at 
night when the ripe primordia open at dusk and release all pollen 
within 1-2 h (Fig. 2, Van Tussenbroek et al., 2008a, 2009). Daily syn-
chronized release of gametes (of the algae) or pollen (of T. tes-
tudinum) are typical for coral reef environments and may or may 
not occur in other habitats. Synchronization may be a mechanism 
of concentration of gametes (of the algae) or pollen (of T. testudi-
num), but alternatively may be a response to avoid consumption 
by nocturnally active zooplankton (Hay, 1997) or daily active pa-
rrotfish (Van Tussenbroek et al., 2008a), respectively.

Seasonal variability. The growth rates of the seagrass Thalassia 
testudinum and the alga Halimeda incrassata in Puerto Morelos 
reef lagoon vary seasonally (Fig. 3). Puerto Morelos, at <210 latitu-
de, experiences a difference of ~2.5 h in daylight and ~5 0C tempe-
rature between winter minima and summer maxima (Fig. 3). Most 
likely light and the solar cycle are the driving forces of seasonal 
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changes in the open-ocean connected reef lagoon and there are 
only few reports of solar-related seasonal fluctuation this far south 
(Van Tussenbroek 1995; Van Tussenbroek & Van Dijk, 2007). The 
magnitude of the seasonal variations in growth rates are reflected 
in minor fluctuations in the dry weight of the seagrass shoots or 
thalli (Van Tussenbroek 1994a, 1995; Van Tussenbroek & Van Dijk, 
2007). But at the level of community, seasonal changes in stan-
ding crop are not obvious as is indicated by the following study. 

From June 1990 until October 1991, the above-ground biomass of 
seagrasses and algae was determined at monthly or bimonthly 
intervals (and once at an interval of three months) at 11 stations 
from coast to reef following the protocol described by Van Tus-
senbroek & Van Dijk (2007) for H. incrassata. The vegetation was 
divided into large morphological groups being: the seagrasses 
Thalassia testudinum and Syringodium filiforme, Halimeda spp., 
other calcareous algae (Penicillus spp., Rhipocephalus spp., Udo-

Figure 3. Seasonal variation in productivity of the seagrass Thallasia testudinum and the calcareous rhizophytic alga Halimeda 
incrassata at Puerto Morelos reef lagoon. Data from Van Tussenbroek (1995) and Van Tussenbroek & Van Dijk (2007). Data on 
temperature (T) courtesy of SAHP, UNAM.

DaylightT. testudinum at C3 (1991)

H. incrassata at C1 (1998) calcified weight T (Avg ´93-´05)

Figure 2A-H. A-D Pollen release of Thalassia testudinum. E-H) Release of gametes by Halimeda incrassata at Puerto Morelos 
reef lagoon. A) Male flower bud at anthesis 11 May 2009 at 6:57 PM, B) Flower after pollen release on 11th May at 8:31PM, C) 
detail of anther flower with pollen, D) Male flower bud consumed by parrotfish, E) Thallus with gametangia on 8th May 2011 6:30 
A.M., F) Thallus after release of gametes on 8th May at 6:45 A.M., G) Detail gametangia, H) Nocturnal feeding of nudibranchs 
(Elysia sp.) on gametangia.

H
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tea spp.), Spongy algae (Avrainvillea spp., Cladocephalus spp.) 
and drift algal groups (mainly Lobophora spp. with less Laurencia 
spp.). The calcareous algae do not show significant seasonal va-
riations (Table 1), and even though above-ground biomass of the 
seagrasses varies with time, maximal summer or minimal winter 
values are not obvious (Fig. 4, Table 1). At this level of commu-
nity organisation, the effects on population densities of grazing, 
competition for light with drifting algal masses, storms, biotur-
bation, natural recruitment or death may be of more influence 
to total standing crop than individual growth rates and weights 
of the plants. The drifting algal group is an exception, and these 
algae attain their maximal biomass during late Summer-Autumn 
and minimal abundance in the Winter-Spring (Fig. 4, Table 1). Ro-
dríguez-Almazán (1997) reports that the cover of masses of the 
dominant drifting brown alga Lobophora variegata (Lamouroux) 
Womersly (ruffled form) is related to periods of heavy wave-ac-
tion caused by during periods of northern winds in Winter and 
Spring or tropical storms (which did not occur in 1990-1991). The 
drifting algae may play an important role as a habitat to meiofau-
na, including the juvenile spiny lobster (Panulirus argus Latreille, 
1804; Briones Fourzán & Lozano-Álvarez, 2001), thus variations in 
their abundance affect the diversity and abundance of associated 
fauna (Estrada-Olivo, 1999).

Both the seagrasses and the rhizophytic algae in the reef 
lagoon have a well-defined seasonal reproductive period. The 
reproductive season of the rhizophytic calcareous algae typically 
occurs from late winter to late summer, with clear peaks at the 
beginning (February) and the end (September) of the reproductive 
season (Van Tussenbroek and Van Dijk, 2007; Van Tussenbroek 
et al., 2006b). Flowering of T. testudinum occurs from March until 
May with fruit-set from June until September (Van Tussenbroek, 
1994b) and H. wrightii and S.filiforme reproduce from February 
until April or May (Muhlia-Montero, 2011). The onset of the repro-
ductive season of the seagrasses varies by 1 to 3 weeks between 
years (Van Tussenbroek, unpublished data) and local fluctuations 
in water temperature and light regime (intensity or photoperiod) 
are thought to be the main factors influencing the induction of the 
flowering season of seagrasses in general (McMillan ,1976, 1982; 

Inglis & Lincoln Smith, 1998; Walker et al., 2001). But in Decem-
ber 2005, 5-6 weeks after the passage of major hurricane Wilma, 
unusual mass-reproduction rhizophytic algae and fruit-set of S. 
filiforme were reported (Van Tussenbroek et al., 2006b). The re-
productive cycle of T. testudinum also initiated unusually early 
(January) in the following year (Van Tussenbroek, unpublished 
data). Oceanographic equipment (Awac Acoustic Doppler Profi-
ler, Nortec AS, Norway) located on the fore reef at 20 m depth re-
gistered a drop in seawater temperature from 29 to 19oC within 12 
h during the passage of the hurricane. The reduced temperature 
event lasted ~18 h, followed by rapid recovery to 25-26oC once the 
hurricane had passed (Escalante-Mancera et al., 2009). Tempera-
tures below 25oC are not registered under usual conditions in this 
lagoon (Rodriguez-Martínez et al., 2010) and the thermal anomaly 
registered during Wilma, may have been the trigger for the unusual 
mass spawning of the green algae and premature flowering of 
the seagrasses. Reproductive thalli and reproductive shoots of 
seagrasses S. filiforme and T. testudinum have been found at all 
times of the year since, until 2010-2011 (Van Tussenbroek & Bar-
ba-Santos, 2011; Van Tussenbroek, unpublished data). After the 
unusual reproductive events following hurricane Wilma, Halime-
da incrassata likely produced viable zygotes (Van Tussenbroek & 
Barba-Santos, 2011) and S. filiforme (Guzmán-Trampe, 2009) and 
T. testudinum (Troyo-Ballina, 2009) showed viable fruit- and seed-
set, indicating that the environmental conditions are favourable 
for the development of reproductive structures throughout the 
year in this tropical lagoon. Thus, wether the seasonal patterns 
of sexual reproduction of the seagrasses and rhizophytic calca-
reous algae are a collective response to environmental cues or a 
strategy of reproductive assurance remains to be investigated.

Inter-annual stability. A remarkable trait of the rooted vegetation 
in the reef lagoon is that all plants are clonal. The vegetative clo-
nal growth occurs through multiplication of the ramets on below-
ground runners, which are rhizomes in the case of seagrasses 
(e.g. Gallegos et al., 1993, 1994; Van Tussenbroek et al., 2006a), 
the rhizoids of the rhizophytic calcareous algae (Van Tussenbroek 
& Barba-Santos, 2011). The stalked lamina of the spongy-like al-

Table 1. Seasonal variability in above-ground biomass of vegetation groups (see Fig. 4) in Puerto Morelos reef lagoon from July 1990 until Dec-
ember 1991 tested with Two-Way ANOVA with sampling time (Time, N 11) and station (N 11) as fixed factors (a 0.01 after Bonferroni correc-
tion). The Spongy algal group is not included because of significant deviations from normality and homoscedasticity. Tukey Poshoc analy-
ses are realized after grouping sampling times in seasons which are listed in ascending order of biomass; the parenthesis indicate groups 
with significant difference. Wi = winter, Sp = Spring, Su = Summer, Au = Autumn, * p < 0.001, ns = not significant, na = not applicable.

Time Station Time × Station Tukey Poshoc

Thallasia testudinum 7.920 * 97.551* 2.887* (Au Su) (Wi Sp)

Syringodium filiforme 6.578* 50.779* 2.704* (Au Wi Sp Su)

Halimeda spp. 1.036 ns 62.777* 2.326* na

Other calcareous algae 1.081ns 92.703* 2.153* na

Drift algae 5.307* 244.203* 4.294* (Wi Sp) (Au Su)
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gae Avrainvillea and Cladocephalus spp. in contrast, arise from 
a large amorphous below-ground holdfast (Littler & Littler 1999), 
and the drift algae tend to multiply through fragmentation (Ro-
dríguez-Almazán, 1997). The clonal growth allows for long-term 
permanence of the species, and the plant communities in the reef 
lagoon appear very constant throughout the year and between 
years when major disturbances are absent.

The ramets of the clonal seagrasses and rhizophytic algae 
are the units of interaction with the neighbours and the environ-

ment (Harper, 1985) and the population cycles of these ramets 
define the dynamics and structure of the community. Interannual 
stability of the populations of the seagrass and rooted algal spe-
cies groups and drift algae from 1990 until 1996 (excluding 1995) 
has been determined along a transect from the coast to the reef, 
as described above for the seasonal variations in biomass. The 
interannual coefficients of variation (CV) were smallest for the 
seagrass species (especially T. testudinum), they were higher for 
the rhizophytic calcareous algae (Halimeda spp. and other cal-

Figure 4a-f. Biomass of the seagrasses (a, b) and algae (g dry m-2: calcified dry weight of calcareous algae Halimeda spp. (c) and 
other calcareous algae (d) sampled at monthly (1990) or bimonthly (1991) intervals from July 1990 until December 1991 (except 
for August 1991) at 11 stations along a transect (T in Fig. 1) from the coast (station 1) to the reef crest (Station 11) in Puerto Mo-
relos reef lagoon. Each point represents the average biomass per sampling station (N 5 quadrats of 0.3 × 0.3 m per sampling per 
station). d) Other calcareous algae: Penicilus spp. Rhipocephalus spp. and Udotea spp., e) Spongy algae: Avrainvillea spp. and 
Cladocephalus spp., f) Drift algae: Lobophora variegata (~90%) and Laurencia sp. (~10%). Note differences in ordinate scales.
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careous algae) and they were exceptionally high for the spongy 
algae (mainly Avrainvillea spp.) and drift algae (Fig. 5). Seagras-
ses, in contrast to the clonal rhizophytic algae, maintain physical 
contact with the juvenile shoots and they show physiological in-
tegration (Tomasko & Dawes, 1989; Marbà et al., 2002). Such phy-
siological integration results in low mortality of the newly formed 
shoots (Gallegos et al., 1994, Van Tussenbroek, 2002), which is an 
indication of support from the older ones (Van Tussenbroek, 2002). 
Seagrass populations, and especially those of T. testudinum, the-
refore, tend to be stable through time, in the absence of major 
disturbances (Fig. 5, Van Tussenbroek, 2002). The thalli (ramets) 
of H. incrassata, in contrast, have a relative high juvenile morta-
lity (19%), most likely because the juvenile thalli do not maintain 
physical contact with the older ones (Van Tusssenbroek & Bar-
ba-Santos, 2011). The shoots (ramets) of the foundation seagrass 
T. testudinum attain a high age of 9 y (Gallegos et al., 1993) or > 
20 y (Van Tussenbroek, 1994b) depending on the site within the 
lagoon. The ramets of the seagrasses H. wrightii (max. 1.2 y, Ga-
llegos et al., 1994) and S. filiforme (max. 2.8 y, Gallegos et al., 1994) 
are much shorter and comparable with the maximal age of the 
thalli of the calcareous alga H. incrassata (2 y, Van Tussenbroek 
& Barba-Santos, 2011). Thus, the more intense dynamics of the 
ramets of the rhizophytic algae (in comparison with S. filiforme, 
Fig. 5) can thus most likely be attributed to the absence of physio-
logical integration and not to their maximal life-span. Much less 
is known concerning the population dynamics of the (holdfasts 
of the) spongy algae, but Avrainvillea longicaulis (Kuetzing) Mu-
rray & Boodle can form full proliferations on a holdfast within 3 d 

through rapid siphon extension (Littler & Littler, 1999). These au-
thors suggest that this rapid proliferation and blade abandonment 
is a strategy to get rid of epiphytes. In this context, it is interesting 
to note that few fronds of the drifting algae Lobophora variegata 
in Puerto Morelos reef lagoon persist after storms as epiphytes on 
the spongy algae followed by rapid population expansion (Rodrí-
guez-Almazán, 1997).

Co-existence of the different seagrass species and rooted 
algae in the tropical seagrass systems, of which the reef syste-
ms are an example of excellence, has been an enigma, because 
in these oligotrophic systems where competition for nutrients 
is most severe (Williams, 1987, 1990; Davis & Fourqurean, 2001), 
the seagrass T. testudinum is competitively superior and should 
thus eventually exclude all other species in due course of succe-
ssion through facilitation (Williams, 1990). But in oligotrophic reef 
systems the seagrass and algal species always grow intermixed 
without forming clear patches with intermediate succession spe-
cies. Co-existence of early and late-colonizers in stable well-de-
veloped seagrass communities has been explained by niche diffe-
rentiation (e.g. different rooting depths, Williams, 1990; Duarte et 
al., 1998) or differential resource exploitation during succession 
(Williams, 1990). But the temporal heterogeneity in clonal spread 
and resource capture by the rooted plants may also play a role in 
the maintenance of diversity of the seagrass-algal communities 
in the Caribbean reef lagoons. The late-colonizing and foundation 
seagrass T. testudinum has a centrifugal “guerrilla-type” clo-
nal growth form (Marbà & Duarte, 1998; Valdivia- Carrillo, 2011), 
which is not very typical for a climax species. Lovett-Doust (1981) 
described the guerrilla growth form as an “opportunistic strategy 
of rapid spread and sampling of the environment” in contrast with 
the “phalanx strategy” which is characterized by “consolidation 
of scarce resources and slow radial spread”. Clonal plants that 
exhibit guerrilla-type growth forms leave unoccupied zones with 
resources (Harper 1985). T. testudinum produces new shoots in 
the order of months (Gallegos et al., 1994; Van Tussenbroek, 1998). 
But rapid growing seagrasses such S. filiforme (Gallegos et al., 
1994) or rhizophytic algae such as H. incrassata produce ramets 
in the order of weeks (Van Tussenbroek & Barba-Santos, 2011) 
and can thus quickly usurp the unoccupied resource-depletion 
zones left by T. testudinum, and thus allowing for co-existence of 
seagrasses and algae.

Clonal growth patterns determine the persistence, prolife-
ration and distribution of the genets (sexual individuals that are 
originated from seeds or zygotes) in the populations, but the 
richness of the genets depends on sexual recruitment. T. testu-
dinum at a coastal zone in Puerto Morelos reef lagoon consists 
of many single genotypes with a high clonal richness (R) of 0.79 
(proportion of genetically unique individuals, max. = 1, Van Dijk & 
Van Tussenbroek, 2010). Between 85-90% of the fruits dehisced 
in situ followed by limited seed dispersal (<1-10 m, Van Dijk et al., 
2009). Thus, at least for T. testudinum, sexual reproduction plays 

Figure 5. Interannual variability (CV: SD/total average × 100%) 
of the biomass of the seagrasses and algal groups sampled 
in the summer months of 1990-1996 (excluding 1995) at 11 sta-
tions along a transect (T in Fig. 1) from coast to reef in Puerto 
Morelos reef lagoon. Each point represents a sampling sta-
tion. Data in parenthesis indicate biomass (g dry m2) of the 
species groups (calcified dry weight for the calcareous algal 
groups Halimeda spp. and Other Calc.: ~85-90% of dry weight 
is CaCO3). Other Calc.: Other calcareous algae. See legend in 
Fig. 4.
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an important role in maintaining within population genetic variabi-
lity. Sexual recruits are also important for long distance dispersal 
(Van Dijk et al., 2009) and for recolonization of denuded areas af-
ter major disturbance within the reef lagoon (see below).

Major disturbances 1: Hurricanes. The seagrass-algal communi-
ty in Puerto Morelos reef lagoon is surprisingly resilient to the im-
pact of hurricanes and most likely the reef barrier functions as a 
major protection structure. For example, during hurricane Wilma 
(October 2005, force 4, winds ~240 km h-1, duration ~63 h) waves 
attained a mean peak height of ~11 m outside the reef tract (Es-
calante-Mancera et al., 2009), which were reduced to ~3 m within 
the reef lagoon (Hydrological and Meteorological Service, Unidad 
Académica Puerto Morelos, unpublished data). Major hurricane 
Gilbert (force 5) passed over Puerto Morelos in September 1988 
with winds ~300 km h-1 (duration ~8 h) and its impact on T. tes-
tudinum was evaluated by means of retrospective analysis. Most 
populations of this seagrass suffered from either sediment burial 
or erosion (Marbà et al., 1994; Van Tussenbroek, 1994c), but de-
pending on environmental settings the population sizes decreased 
only slightly, and when decreases were more substantial, reco-
very was initiated after 1-2 y (Van Tussenbroek, 1994c). Passage 
of hurricane Wilma (October 2005) over Puerto Morelos, Mexican 
Caribbean, caused significant decrease in population density of 
the seagrass Syringodium filiforme and rhizophytic calcareous 
algae, whereas populations of the seagrass Thalassia testudinum 
and Halimeda spp. were almost unaffected (Van Tussenbroek et 
al., 2008b). These impacts of the hurricane supported the results 
of earlier experiments simulating sediment removal and burial by 
hurricanes (Cruz-Palacios & Van Tussenbroek, 2005). Thus, apart 
from obvious impacts such as destruction of seagrass beds, hu-
rricanes may also change the community structure of persistent 
beds through species-specific elimination. In the later case, reco-
very of the community may be relatively fast. Experimental burial 
and sediment removal resulted in a distinct community (Cruz-Pa-
lacios & Van Tussenbroek, 2005), but the differences in species 
composition between the experimental and control plots was 
inexistent after three years (Fig. 6). Hurricane Wilma eliminated 
the lush vegetation of a coastal fringe of 10-60 m by deposition 
of a 0.5-1.0 m thick layer of sand. At present, primary succession 
in this zone follows classical pattern of succession through faci-
litation (Williams, 1990; Van Tussenbroek et al., 2006a). The early 
arrivers were seedlings of Halodule wrightii (after ~6 months) and 
Syringodium filiforme (after ~1 y, Van Tussenbroek, unpublished 
data) and rhizophytic algae. First recruits of H. incrassata in the 
denuded coastal area after hurricane Wilma were found 8 months 
after passage of the hurricane at an average density of 1.3 juve-
nile or young thalli per 100 m2, and were most likely from sexual 
origin (Van Tussenbroek & Barba-Santos, 2011).

In addition, a sudden drop in seawater temperature during 
hurricane Wilma (October 2005) most likely caused loss of syn-

chronization in sexual reproduction of the seagrasses and algae 
(see section Seasonal variability). This sudden decrease in tem-
perature was due to upwelling during the hurricane which brought 
sub-superficial waters from deeper zones to the surface in order 
to restore normal sea levels and hydraulic balance (Escalante et 
al., 2009). The colder and nutrient-enriched water likely replenis-
hed Puerto Morelos reef lagoon with essential trace metals and 
T. testudinum leaf tissue concentrations of Zn increased from 8.3 
to 41.9 μg dry g-1 and concentrations of Fe rose from 24.0 to 78.1 
μg dry g-1 (Whelan et al., 2011).

Major disturbances 2: Eutrophication. Over the last three decades, 
the urban development of Puerto Morelos has increased conside-
rably, with a ten-fold increase in population and establishment of 
several major hotel complexes. Potential sources of nutrients into 
the sea are hotels (e.g. from fertilizers for the golf-courses), inten-
sive farming, rubbish disposal and residential sources. The village 
of Puerto Morelos has no central sewer system and wastes are 
discharged into septic tanks or directly into the aquifer (see also 
Fig. 1). The reef system thrives under low natural nutrient con-
centrations and eutrophication may cause drastic changes in 
this coastal ecosystem. The seagrass-algal community in the reef 
lagoon has undergone gradual, almost imperceptible changes 
over the last decades (Rodriguez-Martinez et al., 2010). Nutrient 
availability to seagrasses may be derived from C:N:P ratios in the 
leaf tissues (Duarte, 1992; Fourqurean et al., 1992). Carbonate sys-
tems, such as Puerto Morelos reef lagoon, are phosphorus limited 
(Short et al., 1990; Fourqurean et al., 1992; Carruthers et al., 2005) 
and the C:P ratio contents in T. testudinum leaves sampled at se-
veral sites within the reef lagoon gradually decreased from 1991 
to 2005 from average 731:1 to 564:1 (N 4 stations) respectively, 
indicating increasing availability of phosphorus (Rodríguez-Mar-
tínez et al., 2010). The seagrasses T. testudinum and S. filiforme 
showed a gradual shift to relatively higher biomass invested in 
above-ground tissues (Rodríguez Martínez et al., 2010), which is 
consistent with an increasing nutrient load (Zieman & Wetzel, 
1980; Erftemeijer & Middelburg, 1993). The total above-ground 
biomass of the community increased from 1991 to 2005, whereas 
that of T. testudinum remained constant (Rodriguez-Martínez et 
al., 2010). Thus, the relative biomass of T. testudinum decreased 
during that period whereas that of the faster-growing S. filiforme 
and fleshy and drift macroalgae increased, although these ten-
dencies varied within and between the seagrass and algal groups 
according to environmental setting and total community biomass 
(Fig. 7). The calcareous rhizophytic algae, however, showed a dis-
tinct tendency with nutrient increase than the other algal groups 
and their relative abundance decreased when conditions became 
more eutrophic (Fig. 7). A possible reason may be that at higher 
densities, light extinction in between the canopy increases (En-
ríquez & Pantoja-Reyes, 2005) and rhizophytic algae, which are 
smaller than the seagrass leaves (Cruz-Palacios & Van Tussen-
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broek, 2005), are likely overshadowed by the seagrasses. Only 
at the extreme oligotrophic back-reef an increase in the relative 
abundance of the calcareous increase is observed (Fig. 7). These 
changes in the community structure also demonstrate that popu-
lations of the macroalgae (and fast growing seagrass species) are 
more dynamic than those of the dominant but slow-growing T. tes-
tudinum (see section inter-annual stability). Thus, at a community 
scale, the algae (and possibly also the faster growing seagrass 

species) may be better indicators of change than the foundation 
seagrass T. testudinum. This gradual shift in community structure 
is consistent with the relative dominance model which predicts 
that the competitive superiority tends to favor species with faster 
relative growth rates at increasing nutrient availability (Fourqu-
rean et al., 1995; Rose & Dawes, 1999; Fourqurean & Rutten, 2003). 
Thus, there are strong indications that Puerto Morelos reef lagoon 
is slowly changing from a pristine to a more eutrophic system.

Figure 6a-b. Multi Dimensional Scaling (MDS) plots of the species composition after experimental simulation of the effects of hu-
rricanes in a seagrass-algal community at two sites (H 1,2 in Fig. 1) in Puerto Morelos reef lagoon, with the enclosures indicating 
the clusters determined by ANOSIM analysis (Primer v.5, Clarke & Warwick, 2001). a) 2002: within 2 months of the experimental 
treatments. b) 2005: three years after the experimental treatment when no differences in species composition were detected 
between the treatments. C: Control, B1: Burial level 1, B2 Burial level 2, SR1 Sediment removal level 1, SR2: Sediment removal 
level 2, the last number indicates the number of replicate (see Cruz-Palacios & Van Tussenbroek, 2005 for further information).
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Figure 7. Development of seagrass-algal community at four sites (C1-4 in Fig. 1) with abundant seagrass cover in Puer-
to Morelos reef lagoon in the course of 17 y. Data from CARICOMP seagrass project Puerto Morelos (Rodríguez-Mar-
tinez et al., 2010). Values of total above-ground community biomass, C:N and C:P content in leaves of Thalassia testu-
dinum (average 1993-2005) for each station are presented above the graphs (C:N, C:P at Coast from one sampling event in 
2001). Decalcified dry weight of the calcareous algae is considered. The vegetation of the Coast was eliminated in October 
2005 by hurricane Wilma. Dotted lines represent linear regression tendencies. Note differences in ordinate scales.
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Dynamics of seagrass communities in tropical reef lagoons in 
general. The present state and dynamics of the seagrass com-
munity at Puerto Morelos reef lagoon are in many ways repre-
sentative of other seagrass systems from similar areas, but se-
veral major differences in environmental settings and dynamics 
are obvious. Other reef systems may receive intermittent nutrient 
inputs from terrestrial runoff (Gabric & Bell, 1993), or upwelling 
possibly in combination with tides (Wolanski et al., 1988; Smith et 
al., 2004). Thus, in many tropical reef systems at similar latitudes 
or more towards the tropics, other factors than incoming radiation 
may mask the signal of solar radiation and intra-annual changes 
in productivity can be forced by upwelling events or increased 
nutrient input and turbidity during rainy seasons (Day et al., 1982; 
Flores-Verdugo et al.,1988; Carrurthers et al., 2002). Tidal differen-
ces are generally small in the tropical Atlantic, but they are more 
obvious in many places in the Indo-Pacific and the time of the day 
when the beds fall dry is of great influence for seagrass biomass 
and functioning (Erftemeijer & Herman, 1994; Stapel et al., 1997) 
and the timing of sexual reproduction (Pettitt, 1980, 1984; Cox & 
Knox, 1989; Cox, 1991). Elsewhere, grazing by sea urchins may 
play an important role in community structure of tropical beds 
(Klumpp et al., 1993; Valentine et al., 2000) and excessive grazing 
by fish may leave areas devoid of seagrasses near the reef (Ran-
dall, 1965). These processes are not obvious in Puerto Morelos. 
Tropical seagrass beds are feeding grounds for marine turtles 
(Williams, 1988; Moran & Bjorndal, 2005; Murdoch et al., 2007), 
manatees or dugongs (Preen, 1995; Marshall et al., 2000). But si-
milar to most tropical systems (Jackson, 1997; Valentine & Duffy, 
2006), the abundance of these large herbivores are greatly redu-
ced in Puerto Morelos at present. Excessive grazing of sea turt-
les may cause total collapse of seagrass beds (Fourqurean et al. 
2010) and the actual virtual absence of the large herbivores may 
be unprecedented for the tropical seagrass beds (Jackson, 1997; 
Valentine & Duffy, 2006). The structure of what we call “pristine” 
beds at the moment may have been completely different before 
these animals were hunted down by humans.

On a world-wide scale, seagrass communities suffer from 
reduction in coverage on a global scale due to human-impacts 
such as eutrophication, siltation, fisheries (resulting in modifica-
tion of food webs), introduced invasive algae, dredging, and land 
reclamation (Short & Wyllie-Echeveria, 1996; Duarte, 2002; Orth et 
al., 2006; Waycott et al., 2009; Short et al., 2011). But much of the 
current knowledge on seagrass communities is based on studies 
in coastal bays (mostly temperate and subtropical), estuaries or 
other wave-protected areas (e.g. most data used by Waycott et 
al., 2009 on world-wide loss of seagrass beds are from studies 
in temperate regions) and less is known concerning the actual 
state of the seagrasses that occupy the reef lagoons (see also 
Carruthers et al., 2002). Seagrass communities in reef systems 
throughout the Greater Caribbean have been monitored as part 
of the Caribbean Coastal Marine Productivity (CARICOMP) Pro-

gram, which is a mangrove, seagrass and coral monitoring net-
work initiated in 1993 (UNESCO 1998). Throughout this area, na-
tural disturbances such as hurricanes, earth quakes or excessive 
rainfalls cause declines in seagrass cover, but the communities 
usually recover within 6 mo to 3 y (CARICOMP 2004). However, 
after > decade of observations, there is a general agreement that 
many coastal systems of this monitoring network have undergone 
changes for the worse due to increased human pressure. Increa-
sed nutrient loading from sewage or sedimentation are amongst 
the major causes (CARICOMP 2004) and in this respect Puerto 
Morelos reef lagoon, regrettably, shares the fate of many other 
Caribbean coastal reef systems. Understanding the dynamics of 
the foundation and ecologically important species which occupy 
these diverse coastal reef lagoons may provide accurate indica-
tors of change for monitoring purposes and thereby providing a 
tool in mitigating the effects of the increasing human presence 
along the coasts of the greater Caribbean.

ACKNOWLEDGEMENTS

The support and collaboration of M. en C. Guadalupe Barba-San-
tos and all students which visited our laboratory over the past 20 
years are greatly appreciated.

REFERENCES

Alongi, D. M. & A. D. McKinnon. 2005. The cycling and fate of terrestria-
lly-derived sediments and nutrients in the coastal zone of the Great 
Barrier Reef Shelf. Marine Pollution Bulletin 51: 239-252.

ÁlvArez-cADenA, J. n., e. SuÁrez-MorAleS & r. gAScA. 1998. Copepod ass-
emblages from a reef-related environment in the Mexican Caribbean 
Sea. Crustaceana 71: 411-433.

ÁlvArez-guillen, H., MA De lA c. gArcíA-AbAD, M. TApiA-gArcíA, g. J. villA-
loboS-zApATA & A. YAñez-ArAncibiA. 1986. Prospección ictioecológica 
en la zona de pastos marinos de la laguna arrecifal en Puerto Mo-
relos, Quintana Roo, verano 1984. Anales del Instituto de Ciencias 
del Mar y Limnología, Universidad Nacional Autónoma de México 
13: 317-336.

brAvo-TzoMpAnTzi, D. 1996. Contribución al conocimiento de los equi-
noideos (Echinodermata: Echinoidea) del Caribe mexicano: Puerto 
Morelos, Quintana Roo, México. Tesis de Licenciatura, Escuela de 
Biología, Universidad de Puebla, México, 44 p.

brAnDer, r. W., p. KencH & D. HArT. 2004. Spatial and temporal variations 
in wave characteristics across a reef platform, Warraber Island, To-
rres Strait, Australia. Marine Geology 207: 169-184.

brioneS-FourzÁn, p. & e. lozAno-ÁlvArez. 2001. The importante of Lobo-
phora variegata (Phaeophyta: Dictyoales) as a habitat for small ju-
veniles of Panulirus argus (Decapada: Palinuridae) in a tropical reef 
lagoon. Bulletin of Marine Science 68: 207-219.

brioneS-FourzÁn, p., v. cASTAñeDA-FernÁnDez De lArA, e. lozAno-ÁlvArez & 
J. eSTrADA-olivo. 2003. Feeding ecology of the three juvenile phases 



306 van Tussenbroek B. I.

 Hidrobiológica

of the spiny lobster Panulirus argus in a tropical ref. lagoon. Marine 
Biology 142: 855-865.

bruggeMAnn, J. H., M. J. H. vAn oppen, A. M. breeMAn. 1994. Foraging by 
the stoplight parrotfish Sparisoma viride. II. Intake and assimilation 
of food, protein and energy. Marine Ecology Progress Series 106: 
57-71.

CARICOMP. 2004. Caribbean Coastal Marine Productivity Program: 1993-
2003. CARICOMP. 88 p.

cArruTHerS, T. J. b., b. i. vAn TuSSenbroeK & W. c. DenniSon. 2005. Influen-
ce of submarine springs and wastewater on nutrient dynamics of 
Caribbean seagrass meadows. Estuarine Coastal and Shelf Science 
64: 191-199.

cArruTHerS, T. J. b., W. c. DenniSon, b. J. longSTAFF, M. WAYcoTT, e. g. 
AbAl, l. J. McKenzie & W. J. lee long. 2002. Seagrass habitats of Nor-
theast Australia: models of key processes and controls. Bulletin of 
Marine Science 71: 1153-1169.

cliFTon, K. e. 1997. Mass spawning by green algae on coral reefs. Science 
275:116-118.

cliFTon, K. e. & l. M. cliFTon. 1999. The phenology of sexual reproduction 
by green algae (Bryopsidales) on Caribbean coral reefs. Journal of 
Phycology 35: 24-34.

collADo-viDeS, l., i. orTegón-AznÁr, A. SenTíeS-grAnADoS, l. coMbA-bArre-
rA & J. gonzÁlez-gonzÁlez. 1998. Macroalgae of Puerto Morelos reef 
system, Mexican Caribbean. Hidrobiológica 8: 133-143.

coronADo, c., J. cAnDelA, r. igleSiAS-prieTo, J. SHeinbAuM, M. lópez & F. J. 
ocAMpo-TorreS. 2007. On the circulation in the Puerto Morelos frin-
ging reef lagoon. Coral Reefs 26: 149-163.

cox, p. A. 1991. Abiotic pollination: an evolutionary escape for animal-
pollinated angiosperms. Philosophical Transactions of the Royal 
Society London. Biological Sciences 333: 217-224.

cox, p. A. & r. b. Knox. 1989. Two-dimensional pollination in hydrophylous 
plants: convergent evolution in the genera Halodule (Cymodocea-
ceae), Halophila (Hydrocharitaceae), Ruppia (Ruppiaceae), and Le-
pilaena (Zannichelliaceae). American Journal of Botany 76: 164-175.

cruz-pAlAcioS, v. & b. i. vAn TuSSenbroeK. 2005. Simulation of hurricane-
like disturbances on a Caribbean seagrass bed. Journal of Experi-
mental Marine Biology and Ecology 324: 44-60.

DAHlgren, c. & J. MArr. 2004. Back reef systems: important but over-
looked components of tropical marine ecosystems. Bulletin of Mari-
ne Science 75: 145-152.

DAviS b. c. & J. W. FourqureAn. 2001. Competition between the tropical 
alga, Halimeda incrassata, and the seagrass, Thalassia testudinum. 
Aquatic Botany 71: 217-232.

DAWeS, c. J. & D. c. bAriloTTi. 1969. Cystoplasmic organisation and rhyth-
mic streaming in growing blades of Caulerpa prolifera. American 
Journal of Botany 56: 8-15.

DAY, J. W., r. H. DAY, M. T. bArreiro, F. leY-lou & c. J. MADDen. 1982. Pri-
mary production in the Laguna de Terminos, a tropical estuary in the 
southern Gulf of Mexico. Oeanological Acta Proceedings Internatio-
nal Symposium on coastal lagoons, SCOR/IABO/UNESCO, Bordeaux, 
France, 8-14 September, 1981: 269-276.

DenniSon, W. c. & r. S. AlberTe. 1985. Role of daily light period in the depth 
distribution of Zostera marina (eelgrass). Marine Ecology Progress 
Series 25: 51-61.

DrecKMAnn, K. M., i. STouT & A. SenTíeS grAnADoS. 1996. Lista actualizada 
de las algas marinas bentónicas de Puerto morelos, Quintana Roo, 
Caribe mexicano. Polibotánica 3: 1-17.

DreW, e. A. & K. M. Abel. 1990. Studies on Halimeda III. A daily cycle of 
chloroplast migration within segments. Botanica Marina 33: 31-45.

DuArTe, c. M. 1990. Seagrass nutrient content. Marine Ecology Progress 
Series 67: 201-207.

DuArTe, c. M. 1992. Nutrient concentrations of aquatic plants: patterns 
across species. Limnology and Oceanography 37: 882-889.

DuArTe, c. M. 2002. The future of seagrass meadows. Environmental Con-
servation 29: 192-206.

DuArTe, c. M., M. Merino & M. gAllegoS. 1995. Evidence of iron deficiency 
in seagrasses growing above carbonate sediments. Limnology and 
Oceanography 40: 1153-1158.

DuArTe, c. M., M. Merino, n. S. r. AgAWin, J. uri, M. D. ForTeS, M. e. gA-
llegoS, n. MArbà & M. A. HeMMingA. 1998. Root production and be-
low-ground seagrass biomass. Marine Ecology Progress Series 171: 
97-108.

DuArTe, c. M., W. c. DenniSon & r. J. W. orTH. 2008. The charisma of coa-
stal ecosystems: Addressing the imbalance. Estuaries and Coasts 
31: 233-238.

eggleSTon, D. b., c. p. DAHlgren & e. g. JoHnSon. 2004. Fish density, diver-
sity and size-structure within multiple back reef habitats of Key West 
National Wildlife refuge. Bulletin of Marine Science 75: 175-204.

enríquez S., n. MArbà, c. M. DuArTe, b. i. vAn TuSSenbroeK & g. reYeS-zA-
vAlA. 2001. Effects of seagrass Thalassia testudinum on sediment 
redox. Marine Ecology Progress Series 219: 149-158.

enríquez, S., M. Merino & r. igleSiAS prieTo. 2002. Variations in the pho-
tosynthetic performance along the leaves of the tropical seagrass 
Thalassia testudinum. Marine Biology 140: 891-900.

enríquez, S. & n. i. pAnToJA-reYeS. 2005. Form-function analysis of the 
effect of canopy morphology on leaf self-shading in the seagrass 
Thalassia testudinum. Oecologia 145: 235-243.

erFTeMeiJer, p. l. A. & p. M. J. HerMAn. 1994. Seasonal changes in envi-
ronmental variables, biomass, production and nutrient contents in 
two contrasting tropical intertidal seagrass beds in South Sulawesi, 
Indonesia. Oecologia 99: 45-59.



Seagrass and algal dynamics in coral reef lagoons 307

Vol. 21 No. 3 • 2011

erFTeMeiJer, p. l. A. & J. J. MiDDelburg. 1993. Sediment-nutrient interac-
tions in tropical seagrass beds: a comparison between a terrigenous 
and carbonate sedimentary environment in South Sulawesi (Indone-
sia). Marine Ecology Progress Series 102: 187-198.

eScAlAnTe-MAncerA, e., r. SilvA-cASArín, e. MenDozA-bAlDWin, i. MAriño-
TApiA & F. ruíz-renTeríA. 2009. Análisis de la variación del nivel del 
mar y de las corrientes marinas inducidas por el huracán Wilma 
frente a Puerto Morelos, Quintana Roo, México. Ingeniería hidráu-
lica en México 24: 111-126.

eSTrADA-olivo, J. J. 1999. Riqueza específica y abundancia de la macro-
fauna bentica asociada a pastizales marinos en la laguna arrecifal 
de Puerto Morelos, Quintana Roo, México. Tesis de Licenciatura, 
Facultad de Ciencias, Universidad Nacional Autónoma de México, 
67 p.

FloreS-verDugo, F., l. Mee & r. briceño-DueñAS. 1988. Phytoplankton pro-
duction and seasonal biomass variation of seagrass Ruppia mariti-
ma L., in a tropical Mexican lagoon with an ephemeral inlet. Estua-
ries 11: 51-56.

FourqureAn, J. W. & l. M. ruTTen. 2003. Competing goals of spatial and 
temporal resolution: monitoring seagrass ecosystem on a regional 
scale. In: Busch D.E. & J.C. Trexler (Eds.). Monitoring ecosystems. 
Island Press, Washington D.C. pp. 257-288.

FourqureAn, J. W., J. c. zieMAn & g. v. n. poWell. 1992. Phosphorus li-
mitation of primary production in Florida Bay: Evidence from C:P:N 
ratios of the dominant seagrass Thalassia testudinum. Limnology 
and Oceanography 37: 162-171.

FourqureAn, J. W., g. v. n. poWell, W. J KenWorTHY & J. c. zieMAn. 1995. 
The effects of long-term manipulation of nutrient supply on compe-
tition between seagrasses Thalassia testudinum and Halodule wrig-
htii in Florida Bay. Oikos 72: 349-358.

FourqureAn, J. W., S. MAnuel, K. A. coATeS, W. J. KenWorTHY & S. r. SMiTH. 
2010. Effects of excluding sea turtle herbivores from a seagrass bed: 
Overgrazing may have led to loss of seagrass meadows in Bermuda. 
Marine Ecology Progress Series 419: 223-232.

gAbric, A. J. & p. r. F. bell. 1993. Review of the effects of non-point nu-
trient loading on coastal ecosystems. Australian Journal of Marine 
and Freshwater Research 44: 261-283.

gAllegoS, M. e., M. Merino, n. MArbÁ & c. M. DuArTe. 1993. Biomass and 
dynamics of Thalassia testudinum in the Mexican Caribbean: eluci-
dating rhizome growth. Marine Ecology Progress Series 95: 185-192.

gAllegoS, M. e., M. Merino, A. roDríguez, n. MArbà & c. M. DuArTe. 1994. 
Growth patterns and demography of pioneer Caribbean seagrasses 
Halodule wrightii and Syringodium filiforme. Marine Ecology Progre-
ss Series 109: 99-104.

gillAnDerS, b. M. 2006. Seagrasses, Fish, and fisheries. In: Larkum, A. W. 
D., R. J. Orth & C. M. Duarte (Eds.). Seagrasses: Biology, Ecology and 
Conservation. Springer, The Netherlands. pp. 503-536

green, e. p. & F. T. SHorT. 2003. World Atlas of seagrasses. Prepared by 
the UNEP World Conservation Monitoring Centre. University of Cali-
fornia Press, Berkeley, USA, 298 p.

guzMÁn-TrAMpe, S. 2009. Desarrollo de fruto y semilla, banco de semillas y 
germinación de Syringodium filiforme. Tesis de Licenciatura, Facul-
tad de Ciencias, Universidad Nacional Autónoma de México, 54p.

HArper, J. l. 1985. Modules, branches and capture of resources. In: Jac-
kson J. B. C., L. W. Buss L. W., & R. E. Cook (Eds). Population biology 
and evolution of clonal organisms, Yale University Press, New Haven 
and London, pp. 1-34.

HAY, M. 1997. Synchronous spawning-When timing is everything. Science 
21: 1080-1081.

HAY, M. e., v. J. pAul, S. M. leWiS, K. guSTAFSon, J. TucKer & r. n. TrinDell. 
1988. Can tropical seaweeds reduce herbivory by growing at night? 
Diel patterns of growth, nitrogen content, herbivory, and chemical 
versus morphological defense. Oecologia 75: 233-245..

HecK, K. l., Jr., g. HAYS & r. J. orTH. 2003. Critical evaluation of the nursery 
role hypothesis for seagrass meadows. Marine Ecology Progress 
Series 253: 123-136.

HelFMAn, g. S. 1993. Fish behaviour by day, night and twilight, In: Pitcher, 
T. J. (Ed.). Behaviour of teleost fishes, 2nd Edition, London. pp. 479-
512.

HeMMingA, M. A. & c. M. DuArTe. 2000. Seagrass Ecology. Chapter 4: Light, 
carbon and nutrients. Cambridge University Press, Cambridge. pp. 
99-145.

HoegH-gulDberg, o., p. J. MuMbY, A. J. HooTen, r. S. STenecK, p. green-
FielD, e. goMez, c. D. HArvell, p. F. SAle, A. J. eDWArDS, K. cAlDeirA, n. 
KnoWlTon, c. M. eAKin, r. igleSiAS-prieTo, n. MuTHigA, r. H. brADburY, 
A. Dubi & M. e. HATzioloS. 2007. Coral reefs under rapid climate chan-
ge and ocean acidification. Science 318: 1737-1742.

HubbArD, D. K., A. i. Miller & D. ScATuro. 1990. Production and cycling of 
calcium carbonate in a shelf-edge reef system (St. Croix, U.S. Virgin 
islands): Applications to the nature of reef systems in the fossil re-
cord. Journal of Sedimentary Petrology 60: 335-360.

HugHeS, T. p. 1994. Catastrophes, phase shifts and large-scale degrada-
tion of a Caribbean coral reef. Science 265: 1547-151.

Instituto Nacional de Ecología (INE). 2000. Comunidad de Puerto Morelos, 
Quintana Roo. Programa de Manejo del Parque Nacional Arrecife de 
Puerto Morelos. Instituto Nacional de Ecología, México, DF 222 p.

ingliS, g. J. & M. p. lincoln SMiTH. 1998. Synchronous flowering of estua-
rine seagrass meadows. Aquatic Botany 60: 37-48.

JAcKSon, J. b. c. 1997. Reefs since Columbus. Proceedings of the 8th Inter-
national Coral Reef Symposium 1: 97-106

KAin J. M. 1989. The seasons in the subtidal. British Phycological Journal 
24: 203-215.



308 van Tussenbroek B. I.

 Hidrobiológica

KluMpp, D. W., SAliTA-eSpinoSA, J. T. & M. D. ForTeS. 1993. Feeding ecology 
and trophic role of sea urchins in a tropical seagrass community. 
Aquatic Botany 45: 205-230.

lArKuM, A. W. D., e. A. DreW & p. J. rAlpH. 2006. Photosynthesis and me-
tabolism in seagrass at the cellular level. In: Larkum, A. W. D., R. J. 
Orth & C. M. Duarte (Eds.). Seagrasses: Biology, Ecology and Con-
servation. Springer, The Netherlands, pp. 323-345.

lArKuM A. W. D., SAliH A. & M. KüHl. 2011. Rapid Mass Movement of Chlo-
roplasts during Segment Formation of the Calcifying Siphonalean 
Green Alga, Halimeda macroloba. PLoS ONE 6 (7): e20841.

liTTler, M. M. & D. S. liTTler. 1999. Blade abandonment/proliferation: A 
novel mechanism for rapid control in marine macrophytes. Ecology 
80: 1736-1746.

loveTT-DouST, l. 1981. Population dynamics and local specialization in a 
clonal perennial (Ranunculus repens): I. The dynamics of ramets in 
contrasting habitats. Journal of Ecology 69: 743-755.

MADSen, J. D., p. A. cHAMberS, W. F. JAMeS, e. W. KocH & D. F. WeSTlAKe. 
2001. The interaction between water movement, sediment dynamics 
and submersed macrophytes. Hydrobiologia 444: 71-84.

MArbà n & c. M. DuArTe. 1998. Rhizome elongation and seagrass clonal 
growth. Marine Ecology Progress Series 174: 269-280.

MArbÁ, n., M. e. gAllegoS, M. Merino & c. M. DuArTe. 1994. Vertical growth 
of Thalassia testudinum: seasonal and interannual variability. Aqua-
tic Botany 47: 1-11.

MArbà, n., M. A. HeMMingA, M. A. MATeo, c. M. DuArTe, Y. e. M. MASS, J. Te-
rrADoS & e. gAciA. 2002. Carbon and nitrogen translocation between 
seagrass ramets.Marine Ecology Progress Series 226: 287-300.

MArSHAll, c. D., p. S. KubiliS, g. D. HuTH, v. M. eDMonDS, D. l. HAlin & 
r. l. reep. 2000. Food-handling ability and feeding-cycle length of 
manatees feeding on several species of aquatic plants. Journal of 
Mammalogy 81: 649-658.

MATeo, M. A., J. cebriÁn, K. DunTon & T. MuTcHler. 2006. Carbon flux in 
seagrass ecosystems. In: (Larkum, A. W. D., R. J. Orth, C. M. Duarte 
(eds.), Seagrasses: Biology, Ecology and Conservation. Springer, 
The Netherlands, pp. 159-192.

McMillAn, c. 1976.Experimental studies on flowering and reproduction in 
seagrasses. Aquatic Botany 2: 87-92.

McMillAn, c. 1982. Reproductive physiology of tropical seagrasses. 
Aquatic Botany 14: 245-258.

Menzel, D. & M. ScliWA. 1986. Motility in the siphonous green alga Bryop-
sis I. Spatial organisation of the cytoskeleton and organelle move-
ments. European Journal of Cell Biology 40: 275-285.

Merino, M. & l. oTero. 1991. Atlas ambiental costero, Puerto Morelos-
Quintana Roo. Ferrandiz SA, México, DF, 80 p.

Moberg, F. e. & c. FolKe. 1999. Ecological goods and services of coral reef 
ecosystems. Ecological Economics 29: 215-233.

MonroY-velAzquez, l. v. 2000. Variaciones en la composición y abundan-
cia en la fauna de decapados asociados a pastizales marinos en 
el Caribe Mexicano. Tesis de Maestría, Programa de Posgrado en 
Ciencias del Mar y Limnología, Universidad Nacional Autónoma de 
México, 80 p.

MoriArTY, D. J. W. & p. i. boon. 1989. Interactions of seagrasses with 
sediment and water. In: Larkum, A. W. D., A. J. McComb & S. A. 
Shepherd (Eds.). Biology of seagrasses. A treatise on the biology of 
seagrasses with special reference to the Australian region. Elsevier, 
The Netherlands. pp. 500-535.

MorAn, K. l. & K. A. bJornDAl. 2005. Simulated green turtle grazing affects 
structure and productivity of seagrass pastures. Marine Ecology 
Progress Series 305: 235-247.

MuHliA-MonTero, M. 2011. La herbivoría de las flores masculinas de 3 es-
pecies de pastos marinos en la laguna arecifal de Puerto Morelos. 
Tesis de Maestría, Programa de Posgrado en Ciencias del Mar y 
Limnología, Universidad Nacional Autónoma de México, México, 
139 p.

MulTer. 1988. Growth rate, utrastructure and sediment contribution of 
Halimeda incrassata and Halimeda monile, Nonsuch and Falmouth 
Bays, Antigua, W.I. Coral Reefs 6: 179-186.

MurDocH, T. J. T, A. F. glASSpool, M. ouTerbriDge, J. WArD, S. MAnuel, J. 
grAY, A. nASH, K. A. coATeS, J. piTT, J. W FourqureAn, p. A. bArneS, M. 
vierroS, K. Holzer & S. r. SMiTH. 2007. Large-scale decline in offshore 
seagrass meadows in Bermuda. Marine Ecology Progress Series 
339: 123-130.

nAgelKerKen, i., g. vAn Der velDe, M. W. goriSSen, g. J. MeiJer, T. vAn´T HoF 
& c. Den HArTog. 2000. Importance of mangroves, seagrass beds and 
the shallow coral ref. as a nursery for important coral reef fishes, 
using a visual census technique. Estuaries, Coastal and Shelf Scien-
ce 51: 31-44.

nAgelKerKen, i., S. KleiJnen, T. Klop, r. A. c. J. vAn Den brAnD, e. cocHereT 
De lA Morinière & g. vAn Der velDe. 2001. Dependence of Caribbean 
reef fishes on mangroves and seagrass beds as nursery habitats: a 
comparison of fish faunas between bays with and without mangro-
ves/seagrass beds. Marine Ecology Progress Series 214: 225-235.

ogDen J. c. & e. H. glAFFelTer. 1983. Coral reefs, seagrass beds and man-
groves: Their interaction in the coastal zones of the Caribbean. 
UNESCO Reports in Marine Science 23: 1-450.

orTH, r. J., T. J. b. cArruTHerS, W. c. DenniSon, c. M. DuArTe, J. W. Fouque-
reAn, K. l. HecK J. r., A. r. HugHeS & g. A. KenDricK. 2006. A global 
crisis for seagrass ecosystems. Bioscience 56: 987-996.

peTTiTT, J. M. 1980. Reproduction in seagrasses: Nature of the pollen and 
receptive surface of the stigma in Hydrocharitaceae. Annals of Bo-
tany 45: 257-271.

peTTiTT, J. M. 1984. Aspects of flowering and pollination in marine an-
giosperms. Oceanography and Marine Biology Annual Reviews 22: 
315-342.



Seagrass and algal dynamics in coral reef lagoons 309

Vol. 21 No. 3 • 2011

preen, A. 1995. Impacts of dugong foraging on seagrass habitats: obser-
vational and experimental evidence for cultivation grazing. Marine 
Ecology Progress Series 124: 201-213.

rAnDAll, J. e. 1965.Grazing effects on seagrasses by herbivorous reef fis-
hes in West Indies.Ecology 46: 255-260.

roDríguez-AlMAzÁn, c. 1997. Evaluación de la dinámica de los mancho-
nes de Lobophora variegata (Dictyotales, Phaeophyta) en la laguna 
arrecifal de Puerto Morelos, Quintana Roo. Tesis de Licenciatura, 
Facultad de Ciencias, Universidad Nacional Autónoma de México, 
Mexico, 59 p.

roDríguez-MArTínez, r. e., F. ruíz-renTeríA, b. vAn TuSSenbroeK, g. bArbA-
SAnToS, e. eScAlAnTe-MAncerA, g. JorDÁn-gArzA & e. JorDÁn-DAHl-
gren. 2010. State and environmental tendencies of the Puerto More-
los CARICOMP site, Mexico. Revista Biologia Tropical 58: 23-43.

roMero, J., K-S lee, M. pérez, M. A. MATeo & T. Alcoverro. 2006. Nutrient 
dynamics in seagrass ecosystems. In: Larkum, A. W. D., R. J. Orth & 
C. M. Duarte (Eds.). Seagrasses: Biology, Ecology and Conservation. 
Springer, The Netherlands. pp. 227-254.

roSe, c. D. & c. J. DAWeS. 1999. Effects of community structure on the 
seagrass Thalassia testudinum. Marine Ecology Progress Series 
184: 83-95.

ruíz-renTeríA, F., b. i. vAn TuSSenbroeK & e. JorDÁn-DAHlgren. 1998. Puer-
to Morelos, Quintana Roo, Mexico. Pp. 57-66. In Kjerfve, B. J. (Ed.) 
CARICOMP-Caribbean Coral Reef, Seagrass and Mangrove Sites. 
UNESCO, Paris. 345 p.

SHorT, F. T., W. c. DenniSon & D. g. cApone. 1990. Phosphorus limited 
growth of the tropical seagrass Syringodium filiforme in carbonate 
sediments. Marine Ecology Progress Series 62: 169-174.

SHorT, F. T. & S. WYllie-ecHeverriA. 1996. Natural and human-induced dis-
turbance of seagrasses. Environmental Conservation 23: 17-27.

SHorT, F. T., b. poliDoro, S. r. livingSTone, K. e. cArpenTer, S. bAnDeirA, J. S. 
buJAng, H. p. cAluMpong, T. J. b. cArruTHerS, r. g. coleS, W. c. Den-
niSon, p. l. A. erFTeMeiJer, M. D. ForTeS, A. S. FreeMAn, T. g. JAgTAp, 
A. H. M. KAMAl, g. A. KenDricK, W. J. KenWorTHY, Y. A. lA nAFie, i. M. 
nASuTion, r. J. orTH, A. prATHep, J. c. SAnciAngco, b. vAn TuSSenbroeK, 
S. g. vergArA, M. WAYcoTT & J. c. zieMAn. 2011. Extinction Risk As-
sessment of the World’s Seagrass Species. Biological Conservation 
144: 1961-1971.

SMiTH, r. D., W. c. DenniSon & r. S. AlberTe. 1984. Role of seagrass pho-
tosynthesis in root aerobic processes. Plant Physiology 74:1055-
1058.

SMiTH, J. e., c. M. SMiTH, p. S. vrooM, K. l. beAcH & S. Miller. 2004. Nutrient 
and growth dynamics of Halimeda tuna on Conch reef, Florida Keys: 
Possible influence of internal tides on nutrient status and physiolo-
gy. Limnology and Oceanography 49: 1923-1936.

STApel, J., r. MAnunTun & M. A. HeMMingA. 1997.Biomass loss and 
nutrient redistribution in an Indonesian Thalassia hemprichii 

seagrass bed following seasonal low tide exposure during 
daylight. Marine Ecology Progress Series 148: 251-262.

ToMASKo, D. A. & c. J. DAWeS. 1989. Evidence for physiological integration 
between shaded and unshaded short shoots of Thalassia testudi-
num. Marine Ecology Progress Series 54: 299-305.

TroYo-bAllinA, A. 2009. Taninos en los frutos de Thalassia testudinum y 
protección de peces herbívoros. Tesis de Licenciatura, Facultad de 
Ciencias, Universidad Nacional Autónoma de México, Mexico, 44 p.

UNESCO. 1998. CARICOMP-Caribbean coral reef, seagrass and mangro-
ve sites. Coastal Region and small island papers 3, UNESCO, Paris 
XIV + 347 p.

unSWorTH, r. K. F., p. SAlinAS De león, S. l. gArrArD, J. JoMpA, D. J. SMiTH 
& J. J. bell. 2008. High connectivity of Indo-Pacific seagrass fish as-
semblages with mangrove and coral reef habitats. Marine Ecology 
Progress Series 353: 213-224.

vAlDiviA-cArrillo, T. 2011. Genética poblacional en pastizales de Tha-
lassia testudinum (Bank ex König) en la laguna arrecifal de Puerto 
Morelos, Quintana Roo. Tesis de Licenciatura, Facultad de Ciencias, 
Universidad Nacional Autónoma de México, Mexico, 99 p.

vAlenTine, J. F & J. e. DuFFY. 2006. The central role of grazing in seagrass 
ecology. . In: Larkum, A. W. D., R. J. Orth & C. M. Duarte (Eds.). Sea-
grasses: Biology, Ecology and Conservation. Springer, The Nether-
lands. pp. 463-501.

vAlenTine J. F., K. l. HecK Jr., K. D. KirScH & D. Webb. 2000. Role of sea 
urchin Lytechinus variegatus grazing in regulating subtropical tur-
tlegrass Thalassia testudinum meadows in the Florida Keys (USA). 
Marine Ecology Progress Series 200: 213-228.

vAlielA, i., J. l. boWen & J. K. YorK. 2001. Mangrove forests: One of the 
world´s threatened major tropical environments. Bioscience 51: 807-
815.

vAn DiJK, J. K., b. i. vAn TuSSenbroeK, K. JiMénez DurÁn, g. J. MÁrquez guz-
MÁn & J. ouborg. 2009. High levels of gene flow and low population 
genetic structure related to high dispersal potential of a tropical ma-
rine angiosperm. Marine Ecology Progress Series 390: 67-77.

vAn DiJK, J.K. & b.i. vAn TuSSenbroeK. 2010. Clonal diversity and structure 
related to habitat of the marine angiosperm Thalassia testudinum 
along the Atlantic coast of Mexico. Aquatic Botany 92: 63-69.

vAn elven, b. r., p. S. lAverY & g. A. KenDricK. 2004. Reefs as contributers 
to biodiversity of epiphytic macroalgae assambleges in seagrass 
meadows. Marine Ecology Progress Series 276: 71-83.

vAn TuSSenbroeK, b. i. 1994a. Spatial and seasonal variability in biomass 
and leaf morphology of the manatee grass Syringodium filiforme in a 
tropical coral reef lagoon, Mexico. Anales del Instituto de Ciencias 
del Mar y Limnología, Universidad Nacional Autónoma de México 
21: 15-22.



310 van Tussenbroek B. I.

 Hidrobiológica

vAn TuSSenbroeK, b. i. 1994b. Aspects of the reproductive ecology of Tha-
lassia testudinum in Puerto Morelos reef lagoon, Mexico. Botanica 
Marina 37: 413-419.

vAn TuSSenbroeK, b. i. 1994c. The impact of Hurricane Gilbert on the vege-
tative development of Thalassia testudinum in Puerto Morelos reef 
lagoon, Mexico: a retrospective study. Botanica Marina 37: 421-428.

vAn TuSSenbroeK, b. i. 1995. Thalassia testudinum leaf dynamics in a 
Mexican Caribbean reef lagoon. Maine Biology 122: 33-40.

vAn TuSSenbroeK, b. i. 1998. Above- and below-ground biomass and pro-
duction of Thalassia testudinum in a tropical reef lagoon. Aquatic 
Botany 61: 69-82.

vAn TuSSenbroeK, b. i. 2002. Static life-table analysis and demography of 
the foliar shoots of the tropical seagrass Thalassia testudinum. Bu-
lletin of Marine Science 71: 1247-1256.

vAn TuSSenbroeK, b. i. & M. g. bArbA-SAnToS. 2011. Demography of Ha-
limeda incrassata (Bryopsidales, Chlorophyta) in a Caribbean reef 
lagoon. Marine Biology 158: 1461-1471.

vAn TuSSenbroeK b. i. & J. K. vAn DiJK. 2007. Spatial and temporal variabili-
ty in biomass and production of psammophytic Halimeda incrassata 
(Bryopsidales, Chlorophyta) in a Caribbean reef lagoon. Journal of 
Phycology 43:69-77

vAn TuSSenbroeK, b. i., J. A. vonK, J. STApel, p. l. A. erFTeMiJer, J. J. MiDDel-
burg & J. c. zieMAn. 2006a. The biology of Thalassia: Paradigms and 
recent advances in research. In: Larkum, A. W. D., R. J. Orth & C. 
M. Duarte (Eds.). Seagrasses: Biology, Ecology and Conservation. 
Springer, The Netherlands. pp. 409-439.

vAn TuSSenbroeK, b. i., M. g. bArbA-SAnToS & J. K. vAn DiJK. 2006b. Unusual 
synchronous spawning by different species of green algae (Bryop-
sidales), after the passage of hurricane Wilma (2005). Botanica Ma-
rina 49: 270-271.

vAn TuSSenbroeK, b. i., J. g. r. Wong & J. MÁrquez-guzMÁn. 2008a. Syn-
chronized anthesis and predation on pollen in the marine angios-
perm Thalassia testudinum (Hydrocharitaceae). Marine Ecology 
Progress Series 354: 119-124.

vAn TuSSenbroeK, b. i., M. g. bArbA-SAnToS, J. K. vAn DiJK, S. n. M. SA-
nAbriA-AlcArAz & M. l. Téllez-cAlDerón. 2008b. Selective elimination 
of rooted plants from a tropical seagrass bed in a back-reef lagoon: 
A hypothesis tested by hurricane Wilma (2005). Journal of Coastal 
Research 24: 278-281.

vAn TuSSenbroeK, b. i., J. MÁrquez-guzMÁn & r. Wong. 2009. Phenology 
of marine angiosperms [seagrasses]: reproductive synchrony in the 
sea. In: Pandalai, S.G. (Ed). Functional Approach to Sexual Plant Re-
production. Research Signpost, India. pp. 17-46.

verWeiJ, M. c., i. nAgelKerKen, D. De grAAFF, M. peeTerS, e. J. bAKKer & g. 
vAn Der velDe. 2006. Structure, food and shade attract juvenile coral 
reef fish to mangrove and seagrass habitats: a field experiment. Ma-
rine Ecology Progress Series 306: 257-268.

WAlKer, D. i. , b. oleSen & r. c. pHillipS. 2001. Reproduction and phenology 
in seagrasses. In: Short, F.T. & R.G. Coles (Eds.). Global seagrass re-
search methods. Elsevier Science B.V. The Netherlands. pp. 59-78.

WAYcoTT, M. c. M. DuArTe, T. J. b. cArruTHerS, r. J. orTH, W. c. DenniSon, 
S. olYArniK, A. cAllADine, J. W. FourqureAn, K. l. HecK, Jr, A. r. Hug-
HeS, g. A. KenDricK, W. J. KenWorTHY, SHorT F. T. & S. l. WilliAMS. 2009. 
Accelerating loss of seagrasses across the globe threatens coastal 
ecosystems. Proceedings of the National Academy of Sciences USA 
106: 12377-12381.

WHelAn iii, T., b. i. vAn TuSSenbroeK & M. g. bArbA SAnToS. 2011. Changes 
in trace metals in Thalassia testudinum after hurricane impacts. Ma-
rine Pollution Bulletin 62: 2797-2802.

WilliAMS, S. l. 1987. Competition between the seagrasses Thalassia tes-
tudinum and Syringodium filiforme in a Caribbean lagoon. Marine 
Ecology Progress Series 35: 91-98.

WilliAMS, S. l. 1988. Thalassia testudinum productivity and grazing by 
green turtles in a highly disturbed seagrass bed. Marine Biology 98: 
447-455.

WilliAMS, S. l. 1990. Experimental studies of Caribbean seagrass bed de-
velopment. Ecological Monographs 60:449-469.

WilliAMS, S. l., W. c. DenniSon. 1990. Light availability and diurnal growth 
of a green macroalga (Caulerpa cupressoides) and a seagrass (Ha-
lophila decipiens). Marine Biology 106: 437-443.

WolAnSKi, e., e. DreW, K. M. Abel & J. o´brien. 1988. Tidal jets, nutrient 
upwelling and their influence on the productivity of the alga Hali-
meda in the Ribbon reefs, Great Barrier reef. Estuarine, Coastal and 
Shelf Science 26: 169-201.

zieMAn, J. c. & r. g. WeTzel. 1980. Productivity in seagrasses: methods 
and rates. In: Phillips R. C. & C. P. McRoy (Eds). Handbook of se-
agrass biology: An ecosystem perspective. Garland STPM Press, 
New York. pp. 87-116.

ziMMerMAn, r. c., J. l. reguzzoni, S. WYllie-ecHverriA, M. JoSSelYn & r. S. 
AlberTe. 1991. Assessment of environmental suitability for growth of 
Zostera marina L. (eelgrass) in San Fransisco Bay. Aquatic Botany 
39: 353-366.

Recibido: 17 de junio de 2011.

Aceptado: 14 de noviembre de 2011.


