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ABSTRACT 

 Background. The Mesa River (MR) in the Iberian Range (Spain) displays prominent, Pleistocene to present-day fluvial 
tufa deposits. Little of their associated microbiota has been studied to date despite the regional and historical relevan-
ce of these calcareous buildups. Goals. This paper is a preliminary exploration of the diatom (Bacillariophyta) genera 
associated with actively-growing tufa from 10 benthic environments along 24 km of the Mesa River. Methods. Bright-
field microscopy, as well as consultation with specialists and specialized literature was used for taxonomic classifi-
cation of diatoms. Results. We identified 25 diatom genera in three different types of sedimentary facies (porous and 
moss-algae rich, dense-laminated, and tufa-free gravel). Most diatoms were raphid pennate (class Bacillariophyceae), 
while a few were centric (class Coscinodiscophyceae) or araphid pennate (class Fragilariophyceae). They appeared as 
integral components of the tufa structure along with cyanobacteria and other algae and mosses. Conclusions. Toge-
ther with previous studies on the hydrochemistry and sedimentology of the MR, our interpretations suggest that HCO

3
-, 

pCO2, Ca2+, and TDIC negatively affect diatom richness and that their abundance is positively related to the presence 
of mosses and algae.

 Key words: Benthic diatoms; freshwater tufas; Iberian Range, Spain.  

RESUMEN

 Antecedentes. Del Río Mesa en la Cordillera Ibérica Española destacan sus tufas fluviales, depositadas desde Pleistoceno 
hasta el reciente. Poco de su microbiota bentónica ha sido estudiado a pesar de la relevancia regional de estas forma-
ciones calcáreas. Objetivos. Con el objetivo de conocer los géneros de diatomeas (división Bacillariophyta) que crecen 
asociados a estas tufas activas, se revisaron muestras de 10 ambientes bentónicos a lo largo de 24 kilómetros del río 
Mesa. Métodos. Se utilizaron técnicas de microscopia y consultas con especialistas y literatura especializada para la 
identificación taxonómica de las diatomeas. Resultados. Se identificaron 25 géneros de diatomeas en tres diferentes 
tipos de facies sedimentarias (porosa con musgo y algas, densa-laminada, y grava sin tufa). La mayoría de las diatomeas 
fueron pennadas y con rafe (clase Bacillariophyceae), y pocas fueron céntricas (clase Coscinodiscophyceae) o pennadas 
sin rafe (clase Fragilariophyceae). Estas aparecieron como componentes integrales de las tufas junto con cianobacterias, 
musgos y algas. Conclusiones. Estudios previos de sedimentología e hidroquímica en este río sugieren que el HCO

3
-, 

pCO2, Ca2+, y TDIC afectan negativamente a la riqueza de diatomeas, y que su abundancia esta positivamente relacionada 
con la presencia de musgos y algas.

 Palabras clave: Cordillera Ibérica, diatomeas bentónicas, España, tobas fluviales.
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INTRODUCTION

Diatoms are of great ecological significance for the functioning of 
aquatic and terrestrial ecosystems, and are useful environmental and 
ecological indicators (e.g. Smol & Stoermer, 2010). They are also key 
oxygenic photosynthesizers and prolific producers of extracellular po-
lymeric substances (EPS) in most benthic habitats today (Krumbein et 
al., 2003; Pentecost, 2005). In fluvial environments, diatoms are also 
key primary producers and abundant on calcareous tufas (also called 
spring-associated limestones) worldwide (e.g. Stevenson et al., 1996; 
Gradzinski, 2010). Because diatoms sequester dissolved CO2 through 
photosynthetic C fixation, which results in a shift in pH, and because 
they produce large quantities of EPS that can agglutinate and accrete 
particles, they may play an important role in tufa formation. 

The Iberian Range in Spain harbors a great variety of fluvial tufa 
systems that have been accumulating since the Pleistocene (Vázquez-
Urbez et al., 2012). In particular, the Mesa River (MR) and the nearby 
Piedra River, have been of historical importance since ancient times 
(e.g. Corral-Lafuente, 2000). Despite this fact, the eukaryotic compo-
nent of these ecosystems is poorly known, even though the microbial 
diversity of other tufas in the Iberian Range have been partially docu-
mented (Beraldi-Campesi et al., 2012).

In this paper, we aim to document the diatom genera present on 
substrates distributed along the Mesa River, and detect any possible 
relationship with environmental conditions, using sedimentary and 
hydrochemical variables that are known to influence tufa deposition. 
This preliminary report will increase our understanding of these geo-
biological systems and will allow comparisons with diatoms from other 
tufa systems and neighboring areas where diatoms have been used for 
monitoring environmental changes (e.g. Flor-Arnau et al., 2008). 

MATERIALS AND METHODS 

Environmental context of the Mesa River. The Mesa River (MR) is one 
of several rivers in the Iberian Range, NE Spain (Fig. 1) that display thick 
tufa deposits (Vazquez-Urbez et al., 2010, 2012; Auque et al., 2013). 
The MR is a tributary of the Jalon River that later enters the Ebro River 
near the city of Zaragoza (Fig. 1). It flows from southwest to northeast 
and cuts through Mesozoic and Tertiary rocks. Mesozoic (Lower Juras-
sic and Upper Cretaceous) carbonate units hold the aquifers that feed 
the river and are responsible for the calcium bicarbonate composition 
of the water. The regional climate is Mediterranean continental, with 
strong seasonal changes in temperature and precipitation. Mean an-
nual precipitation varies from ~20 to ~55 mm and occurs mostly in 
spring (April-May) and autumn (September-October). Mean annual air 
temperature varies from ~5 to 25 ºC (4-5 ºC in December and January 
and 23-25 ºC in July). Mean discharge of the MR reaches 49 hm3/year 
with marked variability (~2 m3/s in May and ~1 m3/s in August; see 
Auque et al., 2013). Several natural springs occur along the MR, most 
notoriously near Mochales and Jaraba (Fig. 1). Water temperature at or 
close to resurgence points is rather constant through the year, about 
13-14 °C in the river at site 1 (Mochales) and between 20-32 °C in the 
low-thermal springs near Jaraba (Pinuaga et al., 2004; Sanchez-Nava-
rro et al., 2004). Mean underground water discharge in Jaraba is also 
constant through the year (570 to 647 l/s; Pinuaga et al., 2004). During 
dry seasons, the river discharge depends mainly on underground in 
puts (Auque et al., 2013). All these climatic and physicochemical varia-
bles drive the overall process of calcite precipitation. 

Facies characterization. Different depositional environments were 
characterized as sedimentary facies based on the type of substrate (in 
plan view and cross section), water depth, water flow, and type of flora 
(according to the main component on the surface: mosses, algae, cya-
nobacteria).

Diatom sampling and identification. Ten sites distributed along the 
MR (Fig. 1, Table 1) were selected according to bed configuration, sedi-
mentary facies, and physical parameters (e.g. slope, depth, and water 
velocity; see below), representing the main sub-environments in the ri-
ver. Sites ranged from empty grounds and gravel beds, to areas densely 
populated by plants, bryophytes, and macroscopic colonies of algae 
and cyanobacteria. 

At each site, 3 to 5 pieces (~1-3 cm3) of the soft, recently-formed 
tufa surface were cored from limestone tablets previously placed at 
each site (see Vazquez-Urbez et al., 2010 for explanation), and combi-
ned into a single sample. Combined samples were immediately stored 
in a 20% ethanol-formalin solution for transport to the laboratory and 
further frozen at -10 °C until inspected under a microscope. 

For microscopic observations of diatom frustules, tufa (CaCO
3) frag-

ments were dissolved in a 50% HCl solution, washed with distilled water 
in 50 ml vials, and centrifuged to obtain a pellet. Pellets were washed in 
distilled water and centrifuged many times before aliquots were taken for 
observation. This was done on a brightfield, phase-contrast, and dark-field 
microscope (Olympus BH2) equipped with an Olympus DPII digital camera. 
Abundance of different genera per sample was noted but not quantified, as 
frustule counts could be highly biased by this method without exhaustive 
sampling of larger areas. Observations per sample were concluded when 
no new morphotypes were discovered in the aliquots. All identifications 
were made upon comparisons with the literature (Hustedt, 1930; Smith, 
1950; Bourrelly, 1968; Round et al., 1990). Taxonomic names were upda-
ted from the Algaebase database (Guiry & Guiry, 2015). Statistical analyses 
(Poisson regression, etc.) were processed for hydrochemical data using the 
R statistical software (R Core Team, 2014). 

RESULTS

Diatom genera distribution.  A total of 25 diatom genera were detec-
ted in the 10 studied sites (Table 1; Figs 2-3). Most of them were pen-
nate and only two were centric (Class Coscinodiscophyceae, Melosira  
Agardh and Biddulphia  Gray; Table 1). Not all the identified genera were 
present at all sites. In general, the number of diatom genera increased 
from sites 1 through 4, oscillated from sites 5 to 8, and abruptly decrea-
sed at sites 9 and 10 (Table 1). 

Among the pennate diatoms, 3 genera were araphid (class Fra-
gilariophyceae) and 20 were raphid (class Bacillariophyceae; Fig. 4). 
Diatom genera are presented in Fig. 4 according to their frequency of 
appearance in the samples, from bottom (frequent) to top (rare); the 
most frequent genera were: Amphora  Ehrenberg ex Kützing, Cocconeis  
Ehrenberg, and Navicula  Bory de Saint-Vincent 1822 (Figs 2-3), which 
were detected in 7 sampling sites. Cymbella  Agardh and Diatoma  Bory 
de St-Vincent (Fig. 2) followed in frequency and were detected in 6 
sites. Gyrosigma Hassall and Rhoicosphenia Grunow (Figs 2-3) were 
present in 5 sites. Genera present in 4 or less sites (Fig. 4; Table 1) 
were Achnanthidium  Kützing,  Gomphonema  Ehrenberg, Stauroneis  
Ehrenberg, Denticula  Kützing, Gomphoneis Cleve, Meridion Agardh, 
Nitzschia  Hassall, Synedra  Ehrenberg, Aneumastus  Mann et Stickle, 



285Diatoms on fluvial tufas of Spain

Vol. 26 No. 2 • 2016

Biddulphia S. F. Gray, Cavinula  Mann et  Stickle, Cosmioneis  Mann et 
Stickle, Diatomella  Greville, Melosira C. Agardh, Pinnularia  Ehrenberg, 
Placoneis  Mereschkowsky, Pleurosigma  Smith, and Surirella  Turpin 
(Table 1; Figs 2- 3). 

Although Cyanobacteria were visibly conspicuous on the tufa subs-
trate, our samples rendered few specimens (Microcystis, Gloeocapsa, 
and Nostoc). Nevertheless, other cyanobacteria are known to exist at 
this river (Beraldi-Campesi et al., 2012). Algae within the Chlorophyta 
(Cladophora, Closterium, and Spirogyra), the Charophyta (Coleochaete), 
the Rhodophyta (Batrachospermum) and the Xanthophyta (Vaucheria), 
were commonly observed as part of the benthic microflora of the MR 
and found in our samples as well (some examples are shown in Figs 5 and 
6). All these organisms were forming large, macroscopic colonies on the 
tufa, non-calcified submerged rocks, or on plant debris. Among these, 
Cladophora  was ubiquitous, and its filaments were usually coated with 
thick layers of calcite (Figs 5K-N). 

From the collected samples and field observations we could see 
that diatoms were especially abundant on algae and on mosses, which 
covered most of the benthic surfaces together with cyanobacteria. 
For instance, colonies of Amphora, Cocconeis, Diatoma, Melosira, and 
Symploca  were found growing preferentially where chlorophyceans (e.g. 
Coleochaete, Spirogyra) were most abundant. The most conspicuous dia-
tom genus in our survey, Cocconeis, was also epiphytic on other diatoms, 
green algae, and cyanobacteria (Biddulphia, Cladophora,  and Nostoc,  
respectively), on which calcification (micritic coatings) was visually 
pervasive. The stalk-forming Rhoicosphenia  and Gomphonema  were 
also conspicuous on filamentous algae and mosses, where also micritic 
particles accumulated around them. These biotic interactions were not 
exclusive, and mixtures could be seen at sites where chlorophyceans, 
rhodophyceans, and xanthophyceans (all carrying epiphytic diatoms) 
were growing together in large patches on the substrate. 

Table 1. Genera of benthic diatoms found along the Mesa River. Presence is indicated by ‘X’. Photos of each genus are shown in Figs 2-3. 
Facies: A = moss-dominated, porous tufa; B = dense, laminated tufa; C = tufa free gravel. See text for sedimentary facies details. Richness 
is expressed as the number of diatom genera found in the samples.
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SITE 1 2 3 4 5 6 7 8 9 10

FACIESa C B A A A/B A A/B A/B C C
GENUS
 Achnanthidium X X X X 2A
 Amphora X X X X X X X 2B
 Aneumastus X 2D
 Biddulphia X 2E
 Cavinula X 2F
 Cocconeis X X X X X X X 2G, H
 Cosmioneis X 2C
 Cymbella X X X X X X 2I, J
 Denticula X X 2K
 Diatoma X X X X X X 2L, M
 Diatomella X 2N
 Gomphoneis X X 2O
 Gomphonema X X X X 3A, D
 Gyrosigma X X X X X 3B
 Melosira X 3C
 Meridion X X

 Navicula X X X X X X X 3E, F, H

 Nitzschia X X 3G
 Pinnularia X
 Placoneis X 3I
 Pleurosigma X 3J
 Rhoicosphenia X X X X X 3K, L
 Stauroneis X X X 3M
 Surirella X 3N
 Synedra X X 3O
RICHNESS 3 8 10 11 6 13 7 12 2 2
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Environmental context and sedimentary facies. The tufa deposits 
we studied displayed different sedimentary characteristics (e.g. va-
riations in thickness, porosity, and presence/absence of lamination), 
depending on the local environmental conditions (water flow veloci-
ty, depth, slope, luminosity, shade, etc.) and the associated flora (e.g. 
algae, bryophytes, etc.). In sites with rapid calcification, these floras 
seemed to be quickly entombed within the tufa structure. Diatoms were 
notorious within calcified communities and seemed to be integral com-
ponents of the tufa structure (Fig. 7). Three main sedimentary facies 

were identified along the MR (see below). Two facies (A and B, see Table 
2) developed on small waterfalls and rapids with relatively shallow and 
fast-flowing water (~100 cm/s), and have been characterized for rapid 
tufa formation (~1.3 cm/yr; Vázquez-Urbez et al., 2010). A third facies 
(C), consisted mainly on gravel-dominated grounds, with poor or no 
carbonate deposition (Table 2). Facies A and B often occurred together 
in lit areas (e.g. sites 4, 5, 6, and 8), and were thicker than in shady 
ones (e.g. sites 2 and 7; See Fig. 1 and Table 1 for location of sites). 
The diatom genera distribution within each of these facies is reported 
in Table 1. Facies descriptions are as follows:

Table 2. Characteristic sedimentary facies found in the sampled sites along the Mesa River.

Depositional subenvironment
Water velocity 

(cm/s)
Depth 
(cm)

Facies 
code

Sedimentary facies

Small, generally stepped jumps, rapids, 
subhorizontal platforms and irregular 
horizontal beds with cobbles.

70 -110 9 - 25 A
Mostly spongy tufa: mats of filamentous algae, mosses, cyano-
bacteria and diatoms, poorly coated with calcite. Lamination is 
commonly absent.

Small jumps, rapids and subhorizontal 
floors and, less commonly, in irregular 
horizontal beds with cobbles

70-120 10-15 B

Laminated tufa made of calcite tubes formed around cyano-
bacterial filaments; mucilaginous substance, bacterial rods and 
cocci bodies, along with diatoms appear associated. Other algal 
components may be seen.

Gravel and cobble beds influenced by 
groundwater inputs

60-120 10-30 C
Rare filamentous algae and mosses, diatoms, cyanobacterial 
biofilms, some mollusks, insect nests and annelid tubes. Small 
clumps of calcite irregularly distributed on algae and mosses.

 

Figure 1. Geographic distribution of sampling sites (numbered dots) and geological context of the Mesa River. The river flows from SW to NE. 
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Figures 2A-O. Diatom genera found in the Mesa River. A) Achnanthidium.  B) Amphora.  C) Cymbella  (red arrow) and Gomphonema  (black arrow). D) Aneumastus 
or Cosmioneis. E) Biddulphia.  F) Cavinula.  G) Cocconeis.  H) Cocconeis on algal filament. I-J) Cymbella.  K) Denticula. L) colonies of Diatoma  on algal filament. M) 
Diatoma. N) Diatomella. O) Gomphoneis. 
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Figures 3A-O. Diatom genera found in the Mesa River. A) Gomphonema.  B) Gyrosigma. C) Melosira next to an algal filament. D) Gomphonema. E-F) Navicula.  G) 
Nitzschia.  H) Navicula. I) Placoneis or Cosmioneis.  J) Pleurosigma.  K) Rhoicosphenia.  L) periphytic Rhoicosphenia  in perivalvar view (red arrow) and valvar view 
(black arrow). M) Stauroneis.  N) Surirella.  O) Synedra.  
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Facies A: This was the most widespread facies (Figs 8A-B) con-
sisting of soft, very porous deposits, composed of completely or par-
tially coated (calcified) filamentous cyanobacteria, and/or filamentous, 
siphonous, and parenchymatous algae (e.g. Spirogyra , Vaucheria , and 
Batrachospermum  respectively), and bryophytes (Fig. 8B). Filamentous 
algae and mosses were visually more abundant than cyanobacteria in 
this facies. Both micrite and spar calcite crystals were present on these 
organisms, and pores and voids were sometimes filled with calcite, as 
in other examples of the same area (Arenas et al., 2000), indicating 
relatively quick diagenetic processes. A variety of benthic diatoms were 
observed as periphyton on bundles of filamentous algae in this facies 
(Fig. 7). 

Facies B: This facies consisted of hard and dense, calcitic, lamina-
ted deposits (also called stromatolitic tufa; Figs. 8C-D). Cyanobacteria 
were more common than algae in this facies. Sub-millimeter to mm-
thick laminae were composed of calcite tubes forming palisades and 
bunches subperpendicular to the surface. The tubes were hollow (inner 
diameter ~7 µm) and consisted of ~5-7 µm -thick micrite and spar cal-
cite walls (shown in cross section in Fig. 7B), and were linked by calcite 
crystals and mucilaginous substance, on which diatoms were attached. 
The size and morphology of the tubes suggest that filamentous micro-
bes acted as templates for the nucleation of calcite. 

Facies C: This facies consisted of poorly calcite-coated substrates 
(Figs 8E-F) in less shallow water. The bedrock was dominated by gravel 
and cobble deposits on gently steep or quasi-horizontal beds, in me-
dium to high-velocity flow conditions (60-100 cm/s). These sites were 
close to springs and thus received variable groundwater inputs. Thin 
patches of cyanobacteria-dominated communities, scarce filamentous 
algae, mollusks, and some insect nests were common biotic features of 
these facies. These components were almost devoid of calcite impreg-
nations or coatings (e.g. sites 1, 3, 9, and 10). 

DISCUSSION

Diatoms and tufa formation. Pennate diatom genera were abundant 
and had a wide distribution within the MR samples, while centric dia-
toms were represented only by two genera. This has also been ob-
served in other tufas and travertines of the world (Pentecost, 2005; 
Brinkmann et al., 2007; Arp et al., 2010; Gradzinski, 2010). 

Most of the identified diatom genera have been reported from other 
freshwater streams of the world (Pentecost, 2005; Brinkmann et al., 
2007; Arp et al., 2010). Among these, genera such as Amphora, Coc-
coneis, and Navicula had the widest distribution in the MR samples. 
In contrast, Aneumastus, Biddulphia, Cavinula, Cosmioneis, Diatomella, 
Melosira, Pinnularia, Placoneis, Pleurosigma, and Surirella  were only 
present in one sample from the MR. Only 17 genera identified here 
(Achnanthidium, Amphora, Cocconeis, Cymbella, Denticula, Diatoma, 
Gomphoneis, Gomphonema, Gyrosigma, Melosira, Meridion, Navicula, 
Nitzschia, Pinnularia, Rhoicosphenia, Surirella, and Synedra), corres-
ponded to 68 genera found in the Ebro basin (Flor-Arnau et al., 2008), 
which is a neighboring drier basin to the north of the Iberian Range. 
Even though our study was limited  for close comparisons by the taxo-
nomic resolution, it seems that these tufa environments bear a unique 
‘oasis’ of diatom genera within the region. Nevertheless, complemen-

tary molecular fingerprinting studies would help to refine the identity 
and distribution of diatoms in these areas. 

In the MR, 80% of the pennate diatoms displayed raphe, which is 
related to the motile benthic habit of the Bacillariophyceae (Round et al., 
1990; Chafetz et al., 1991; Arp et al., 2010). A motile capability would 
perhaps favor pennate raphids over the non-motile pennate araphids in 
places where continuous and fast carbonate precipitation occurs (~5 
mm/yr on average and up to 13 mm/yr in some places; see Vázquez-
Urbez et al., 2010). It is likely that the fast carbonate deposition is in 
part responsible for changes in growth speed, coverage, and distribu-
tion of benthic microorganisms, including diatoms. It is reasonable to 
think that eukaryotic and prokaryotic communities at the surface of 
these (visually abundant) tufas, are very dynamic, in part due to the 
environmental pressure of permanent calcification and entombment. 
Another ecological alternative observed in non-calcareous, siliciclastic 
environments is that the distribution of motile versus non-motile dia-
toms may be due to their growth habits, in which non-motile diatoms 
tend to form bulk colonial aggregates, while motile diatoms are more 
widely dispersed (Hudon & Legendre, 1987).

Figure 4. Frequency distribution of diatom genera from 10 sampling sites. B = 
Bacillariophyceae; F = Fragilariophyceae; C = Centric.
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Figures 5A-U. Examples of benthic organisms co-existing with diatoms. A) Colony of the planktonic cyanobacterium Microcystis, although usually planktonic, these 
colonies become attached to the substrate at shallow exposures of the tufa. B) Close up of A showing the mucilage cover around the entire colony, which keeps it 
from disaggregating. C) Colony of the cyanobacterium Gloeocapsa showing stratified sheaths in a dense mucilaginous matrix. D-E) Arrangement of trichomes within a 
colony of Nostoc. F) Single filament within a Nostoc  colony, around which abundant mucilage has been secreted. G) Ramified trichome of Cladophora.  H) Filaments of 
Cladophora  with and without growing bulbs. I) Zoom on a filament of Cladophora to appreciate cellular details and sparse calcite adhered to its sheath. J) Cladophora 
mingled with Vaucheria filaments. K) Filaments of Cladophora  completely coated with calcite. L) Zoom on a Cladophora bulb without calcitic coat. M) A bulb of Clado-
phora in the process of being coated with calcite. N) Partially-coated Cladophora filaments. O-R) Unbranched, overlapped filaments of Spirogyra  This alga was rarely 
found coated with calcite. S) Large cell of Closterium next to a Spirogyra filament. T) Basal cells of a Coleochaete colony. U) Terminal cells of a Coleochaete colony.
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Diatoms can be seen in fresh fractures of recently-formed tufa 
(upper 10 cm of actively-growing tufa) and likely play a role in the 
mediation of these sedimentary structures by enhancing carbo-
nate precipitation and influencing the morphological development 
of the structure. Tufa formation can go on abiotically through CO

2 
outgassing (Merz-Preiβ & Riding, 1999; Chen et al., 2004; Vazquez-
Urbez et al., 2010), but some organisms (bacteria, algae, fungi, br-
yophytes, plants) can mediate tufa development by a) trapping and 

binding particles with accretionary movement in and on a sticky, 
EPS-rich surface; b) serving as nucleation sites where calcite crys-
tals accommodate according to the pre-existing 3D arrangement 
of the colonies, which develops particular structures and microfa-
brics; c) by removing dissolved CO

2 during photosynthesis; and d) 
by altering the local equilibrium in favor of carbonate precipitation 
(Rogerson et al., 2008; Pedley et al., 2009; Dittrich & Sibler, 2010; 
Shiraishi et al., 2008, 2010). 

Figures 6A-L. Examples of benthic organisms co-existing with diatoms. A) Filaments of Vaucheria.  B-C). Zoom on filaments of Vaucheria showing details of the cellu-
lar contents. Note almost no calcitic coatings around them. D) Filaments of Vaucheria in the process of being coated with calcite. E) Filament of Vaucheria completely 
coated with calcite and epiphytic diatoms (Gomphonema) on its surface. F) Fragment of a Batrachospermum terminal cells. G-H) Cellular arrangement of Batrachos-
permum  showing a central stem and lateral branches. I-L) Cellular morphology and arrangement within a macroscopic branch (shown in G-H) of Batrachospermum.
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SEM and light microscopy observations, however, have shown that 
diatoms of the MR are not necessarily coated with calcite, despite being 
attached to algae or solid substrates where micrite and calcite platelets 
are part of the bulk mass (Figs 6E, 7). Although diatoms (e.g. Cocconeis-
like morphologies; Fig. 7) can be seen embedded in the already-formed 
tufa, they seem to avoid calcite precipitation directly on their extra-
cellular surroundings. This phenomenon has been observed in other 
similar substrates as well (Merz-Preiβ & Riding, 1999; Arp et al., 2001; 
Gradzinski, 2010). This is perhaps because of the composition of their 
EPS, but could also be derived from a constant EPS replacement gi-
ven their motile nature, in contrast with cyanobacteria and green algae 
that calcify in situ given their sessile nature. In this regard, it should 
be further determined if combined factors, including seasonality, also 

influence the way in which calcite precipitates around microbial co-
lonies. For instance, poor precipitation on diatom biofilms during the 
winter (e.g. Arp et al., 2001) may reverse during the summer when 
there is a much higher rate of calcite precipitation (Vázquez-Urbez et 
al., 2010). Carbonate precipitation may also change due to variations in 
community composition, which in turn influence the amount and type of 
organic substrates on which CaCO

3 can bind and start calcite nucleation 
(e.g. Lebron & Suarez, 1996). Although determining the particular role 
of the MR diatoms in the processes of tufa formation requires additio-
nal studies, the biotic components in the river certainly contribute to 
developing particular structures and textures, and determine much of 
the volume and porosity of the MR and other tufa deposits of the world 
(Rogerson et al., 2008; Pedley, 2009; Pedley et al., 2009; Gradzinski, 

Figures 7A-B. Scanning Electron Microscope images of samples from facies A and B. A) facies A showing calcified filaments of green algae and mosses covered 
with diatoms. Note large Cocconeis Frustules on an algal filament (to the left). B) facies B showing calcite tubes (empty cyanobacterial sheaths) found within dense, 
laminated facies. Note the abundant exo-polysaccharides (EPS) filling interstitial spaces, where diatoms resembling Aneumastus or Cosmioneis are also present.
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2010; Shiraishi et al., 2010; Vázquez- Urbez et al., 2010). Usually, the 
organisms that produce more biomass exert a major influence on the 
inner texture and fabric developed in tufas. This is evident in soft, moss-
rich, porous tufa that can grow > 10 mm/year in these rivers, compared 
to 5 mm/year or less in microbial, biofilm-dominated tufas (Vázquez-
Urbez et al., 2010).

Interestingly, this effect of the biology on the inner texture of the 
tufas also occurs in other chemical sedimentary deposits where micro-
bes are present (e.g. travertines, stromatolites, thrombolites, and silica 
sinters; see Cady & Farmer, 1996; Jones & Renaut, 1996; Jones et al., 
1998; Riding, 2000; Konhauser et al., 2001; Pentecost, 2005; Jones et 
al., 2007, 2008). In the MR, the presence of diatoms frustules within the 
tufa structure (and within most chemical sedimentary deposits), likely 

influences the diagenetic processes of lithification and remineralization 
early after lithification (which is quite fast in chemical deposits). Other 
means of influence may involve the amount of organic matter they con-
tribute to the system, a part of which is expected to be entombed within 
the tufa structure (Fig. 7). It remains unclear, however, how this organic 
matter and silica frustules affect the diagenetic processes of the tufa 
over time. Nevertheless, fluids and minerals likely evolve through time 
and alter the primary structure of the tufa, as well as the amount and 
composition of organic matter and metabolic byproducts, along with the 
recycling of the opaline silica frustules trapped within the sedimentary 
structure during intermediate stages of tufa formation (e.g. Kastner et 
al., 1977; Hein et al., 1978; Barker et al., 1991; Michalopoulos et al., 
2000).

Figures 8A-F. Field view of the major sedimentary facies distributed along the Mesa River, and close ups of limestone tablets recovered at representative sites with 
those facies. A-B) facies A (moss- and algal-dominated, soft and highly porous sediment) at site 4. C-D) facies B (dense, laminated tufa) at site 2. E-F) facies C (gravel-
dominated, poor tufa development) at site 9. Note snails of different sizes grazing on primary producers, which erode the tufa surface.
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Sedimentary and hydrochemical variables. Data from previous stu-
dies on the hydrochemistry of the MR (Auque et al., 2013) were used for 
correlation with the presence of diatom genera using an Anova Poisson 
regression (Fig. 9). Some of the physicochemical variables (alkalinity 
[HCO

3
-], K+, Ca2+, pCO2, and TDIC) varied negatively and significantly 

with respect to diatom genera richness, while pH and CaCO3 were also 
significant but varied positively (Fig. 9). In sites with low (< 5) number 
of genera present (sites 1, 9, 10), these variables attained high values, 
whereas in sites with a higher number of genera (> 5) their values were 
low, especially sites 6 and 8, which had the highest richness of all. 

The number of genera present in samples from the beginning and 
the end of the river was low, in sites where springs and human esta-
blishments (especially the largest, Jaraba and Ibdes) also occur (Fig. 1). 
Nevertheless, other sites close to (less populated) towns (e.g. sites 3 
and 6) had a relatively high numbers of diatom genera, causing uncer-
tainty as to whether human establishments had a direct influence on 
diatoms or not. Further considerations on the degree of human activity 
in these towns and its impact on the quality of nearby water, including 
outputs from agriculture and other activities, should be assessed before 
assuming a negative correlation between these two variables. 

In the MR, deep-underground, somewhat thermal, and cool-water 
surface processes drive calcite precipitation at a large scale. Calculated 
saturation index (SIc) for calcite were consistent with abundant tufa for-
mation with values above 0.77 (Auque et al., 2013) that seem sufficient 
to overcome the carbonate kinetic precipitation barrier (e.g. Jacobson 
& Usdowski, 1975; Dandurand et al., 1982; Suarez, 1983; Drysdale et 
al., 2002; Malusa et al., 2003; Lojen et al., 2004). The springs along 
the river (sites 1, 3 and 9) were the exception, as the SIc decreases 
below 3.20 (Auque et al., 2013) and almost no tufa formation took 
place at those sites (only facies C develops there). These sites were 
directly affected by nearby groundwater discharges (especially at the 

Jaraba thermal waters) at equilibrium or near equilibrium with respect 
to calcite. Mixing of groundwater inputs and surface water seemed to 
promote a clear decrease in the SIc values, as well as an increase in 
the pCO

2 partial pressure, the HCO3
-, and TDIC contents. Therefore, the 

occurrence of several groundwater discharge points along the MR is 
likely a main factor controlling the tufa sedimentation rates, as ground-
water inputs promote the increase in the partial pressure of CO

2 and 
the decrease in the SIc values, precluding tufa formation near those 
groundwater discharge points. Downstream of these points, CO2 degas-
sing increases the SIc values and, after a certain distance, saturation 
index values again reach the minimum threshold for tufa formation (see 
Auque et al., 2013 for further details). 

Furthermore, the number of diatom genera decreased with higher 
concentrations of HCO

3, K
+, Ca2+, pCO2, and TDIC (Fig. 9), and increased 

with pH. In this respect, higher Ca2+ and HCO3
- concentrations in the 

water are assumed to derive from less CaCO3 precipitation for sites 
1, 9, and 10, which coincidently record the lowest tufa deposition ra-
tes and the lowest numbers of diatom genera (Facies C). These sites 
were strongly influenced by groundwater inputs, which supplied dis-
solved CO

2 to the flowing water, therefore inhibiting or lowering CaCO3 
precipitation (Auque et al., 2013). The drastic decrease in numbers of 
diatom genera at site 9 and downstream may be influenced by the 
high underground discharge of the Jaraba springs (570 to 647 l/s). By 
contrast, sites with high numbers of diatom genera were away from 
spring discharges and had different sedimentary facies. For example, 
in sites with higher numbers of diatom genera (sites 4, 6, and 8), soft, 
porous tufa with abundant calcified filamentous algae and mosses has 
developed (facies A; Fig. 8 A-B). In contrast, sites 5 and 7 displayed both 
facies A and B, but developed in more shady areas (less photosynthetic 
activity), particularly site 7. It is possible that the dominance of diatoms 
in places with low CaCO

3 precipitation, is also influenced by their biotic 

Figure. 9. Poisson regression of physicochemical data (Auque et al., 2013) and diatom richness values. Only black dots indicate variables that correlated significantly 
with richness. Values for pH and CaCO3 correlated positively. Values for HCO3

-, K+, Ca2+, TDIC, and pCO2 correlated negatively. The log regression was constrained to 
the 95% confidence interval.
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interactions, such as their epiphytic habit (higher richness where mos-
ses and algae were more abundant), which are ultimately determined by 
the different physical and chemical conditions at each site. Despite the 
wide range of environmental conditions that a single species of diatom 
can tolerate (e.g. Fischer, 1979; Sánchez-Castillo 1993), the hydroche-
mistry along the MR has remained fairly constant throughout the last 
decade (Auque et al., 2013). Yet for some diatom species, a wide ran-
ge of environmental conditions may not  significantly affect changes in 
morphology (Stevenson et al., 1996). Therefore, assessments based 
on morphological traits to the level of genera should be taken with 
caution when using them as proxies for interpreting past or present 
environmental parameters, because discrete morphological changes 
may not be detected to the species level. Tufas exist since ancient 
times (Brasier, 2011) and thus are potential paleoenvironmental re-
servoirs of information about the physicochemical conditions at the 
time of deposition (Pedley & Rogerson, 2010), which may help us better 
understand the ecology of these environments through time. More stu-
dies on the diversity of the microflora living in these unique, freshwater 
sedimentary systems are needed. The use of biotechnological and bio-
informatic tools are needed to explore such biodiversity. At least for 
diatoms, however, the recognition of the morphological expression of 
such biota should never be neglected.
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